Synlett 2023; 34(10): 1174-1184
DOI: 10.1055/a-1957-3872
cluster
Dispersion Effects

Reaction Mechanisms for Chiral-Phosphate-Catalyzed Transformations Involving Cationic Intermediates and Protic Nucleophiles

Jianyu Zhai
,
The research detailed in this account was funded by the University of British Columbia and the Natural Sciences and Engineering Research Council of Canada (NSERC).


Abstract

Recent strategies for enantioinduction often focus on employing a chiral catalyst to noncovalently interact with the substrate. By restricting the number of low energy diastereomeric transition states the reacting components can adopt, stereoselectivity can be achieved. Many of these noncovalent interactions include a significant dispersive component and these types of contacts have historically been difficult to model accurately. Modern computational methods have been designed to overcome such limitations. Using our computational work on chiral phosphate catalysis, we discuss the reasons for enantioselectivity in diverse reaction space.

1 Introduction

2 Chiral Phosphate Catalysis

3 Phosphate-Catalyzed Transfer Hydrogenation

4 Phosphate-Catalyzed Aza-Friedel–Crafts Reaction

5 Phosphate-Catalyzed Reactions Involving Allenamides

6 Comprehensive Qualitative Models

7 Chiral Phosphates and Thionium Intermediates

8 Conclusion



Publikationsverlauf

Eingereicht: 16. August 2022

Angenommen nach Revision: 07. Oktober 2022

Accepted Manuscript online:
07. Oktober 2022

Artikel online veröffentlicht:
29. November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Sunoj RB. Acc. Chem. Res. 2016; 49: 1019
  • 2 Krenske EH, Houk KN. Acc. Chem. Res. 2013; 46: 979
  • 3 Peng Q, Duarte F, Paton RS. Chem. Soc. Rev. 2016; 45: 6093
  • 4 Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274
  • 5 Becke AD. Phys. Rev. A: At. Mol. Opt. Phys. 1988; 38: 3098
  • 6 Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
  • 7 Johnson ER, Mackie ID, DiLabio GA. J. Phys. Org. Chem. 2009; 22: 1127
  • 8 Grimme SJ. J. Comput. Chem. 2004; 25: 1463
  • 9 Schwabe T, Grimme S. Phys. Chem. Chem. Phys. 2007; 9: 3397
  • 10 Grimme S, Antony J, Ehrlich S, Krieg HJ. Chem. Phys. 2010; 132: 154104
  • 11 Chai JD, Head-Gordon M. Phys. Chem. Chem. Phys. 2008; 10: 6615
  • 12 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
  • 13 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 41: 157
  • 14 Reid JP. Commun. Chem. 2021; 4: 171
  • 15 Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
  • 16 Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
  • 17 Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
  • 18 Mayer S, List B. Angew. Chem. Int. Ed. 2006; 45: 4193
  • 19 Wang X, List B. Angew. Chem. Int. Ed. 2008; 47: 1119
  • 20 Lifchits O, Reisinger CM, List B. J. Am. Chem. Soc. 2010; 132: 10227
  • 21 Courant T, Kumarn S, He L, Retailleau P, Masson G. Adv. Synth. Catal. 2013; 355: 836
  • 22 Xie Y, Zhao Y, Qian B, Yang L, Xia C, Huang H. Angew. Chem. Int. Ed. 2011; 50: 5682
  • 23 Yang B, Zhai X, Feng S, Hu D, Deng Y, Shao Z. Org. Lett. 2019; 21: 330
  • 24 Romano C, Minqiang J, Monari M, Manoni E, Bandini M. Angew. Chem. Int. Ed. 2014; 53: 13854
  • 25 Yang X, Toste FD. Chem. Sci. 2016; 7: 2653
  • 26 Yang K, Bao X, Liu S, Xu J, Qu J, Wang B. Eur. J. Org. Chem. 2018; 46: 6469
  • 27 Akiyama T. Chem. Rev. 2007; 107: 5744
  • 28 Terada M. Synthesis 2010; 12: 1929
  • 29 Lin X, Wang L, Han Z, Chen Z. Chin. J. Chem. 2021; 39: 802
  • 30 Yamanaka M, Itoh J, Fuchibe K, Akiyama T. J. Am. Chem. Soc. 2007; 129: 6756
  • 31 Simón L, Goodman JM. J. Am. Chem. Soc. 2008; 130: 8741
  • 32 Simón L, Goodman JM. J. Am. Chem. Soc. 2009; 131: 4070
  • 33 Simón L, Goodman JM. J. Org. Chem. 2010; 75: 589
  • 34 Simón L, Goodman JM. J. Org. Chem. 2011; 76: 1775
  • 35 Grayson MN, Pellegrinet SC, Goodman JM. J. Am. Chem. Soc. 2012; 134: 2716
  • 36 Grayson MN, Goodman JM. J. Am. Chem. Soc. 2013; 135: 6142
  • 37 Marcelli T, Hammar P, Himo F. Chem. Eur. J. 2008; 14: 8562
  • 38 Marcelli T, Hammar P, Himo F. Adv. Synth. Catal. 2009; 351: 525
  • 39 Gao S, Duan M, Houk KN, Chen M. Angew. Chem. Int. Ed. 2020; 59: 10540
  • 40 Wang J, Zheng S, Rajkumar S, Xie J, Yu N, Peng Q, Yang X. Nat. Commun. 2020; 11: 5527
  • 41 Meng SS, Yu P, Yu YZ, Liang Y, Houk KN, Zheng WH. J. Am. Chem. Soc. 2020; 142: 8506
  • 42 Duan M, Diaz-Oviedo CD, Zhou Y, Chen X, Yu P, List B, Houk KN, Lan Y. Angew. Chem. Int. Ed. 2022; 61: e202113204
  • 43 Lou H, Wang Y, Jin E, Lin X. J. Org. Chem. 2016; 81: 2019
  • 44 Gao S, Duan M, Shao Q, Houk KN, Chen M. J. Am. Chem. Soc. 2020; 142: 18355
  • 45 Saito K, Shibata Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2013; 135: 11740
  • 46 Lerchen A, Gandhamsetty N, Farrar EH. E, Winter N, Platzek J, Grayson MN, Aggarwal VK. Angew. Chem. Int. Ed. 2020; 59: 23107
  • 47 Maddocks CJ, Ermanis K, Clarke PA. Org. Lett. 2020; 22: 8116
  • 48 Yang B, Dai J, Luo Y, Lau KK, Lan Y, Shao Z, Zhao Y. J. Am. Chem. Soc. 2021; 143: 4179
  • 49 Akiyama T, Morita H, Bachu P, Mori K, Yamanaka M, Hirata T. Tetrahedron 2009; 65: 4950
  • 50 Seguin TJ, Lu T, Wheeler SE. Org. Lett. 2015; 17: 3066
  • 51 Pator J, Rezabal E, Voituriez A, Betzer JF, Marinetti A, Frison G. J. Org. Chem. 2018; 83: 2779
  • 52 Reid JP, Goodman JM. Org. Biomol. Chem. 2017; 15: 6943
  • 53 Reid JP, Simón L, Goodman JM. Acc. Chem. Res. 2016; 49: 1029
  • 54 Reid JP, Goodman JM. J. Am. Chem. Soc. 2016; 138: 7910
  • 55 Reid JP, Goodman JM. Chem. Eur. J. 2017; 23: 14248
  • 56 Maji R, Mallojjala SC, Wheeler SE. Chem. Soc. Rev. 2018; 47: 1142
  • 57 Caballero-García G, Goodman JM. Org. Biomol. Chem. 2021; 19: 9565
  • 58 Proctor RS. J, Colgan AC, Phipps RJ. Nat. Chem. 2020; 12: 990
  • 59 Lacour J, Linder D. Chem. Rec. 2007; 7: 275
  • 60 Milo A, Neel AJ, Toste FD, Sigman MS. Science 2015; 347: 737
  • 61 Orlandi M, Toste FD, Sigman MS. Angew. Chem. Int. Ed. 2017; 56: 14080
  • 62 Biswas S, Kubota K, Orlandi M, Turberg M, Miles DH, Sigman MS, Toste FD. Angew. Chem. Int. Ed. 2018; 57: 589
  • 63 Hamilton GL, Kanai T, Toste FD. J. Am. Chem. Soc. 2008; 130: 14984
  • 64 Overvoorde LM, Grayson MN, Luo Y, Goodman JM. J. Org. Chem. 2015; 80: 2634
  • 65 Falcone BN, Grayson MN, Rodriguez JB. J. Org. Chem. 2018; 83: 14683
  • 66 Maity P, Pemberton RP, Tantillo DJ, Tambar UK. J. Am. Chem. Soc. 2013; 135: 16380
  • 67 Shoja A, Reid JP. J. Am. Chem. Soc. 2021; 143: 7209
  • 68 Johnson JE, Morales NM, Gorczyca AM, Dolliver DD, McAllister MA. J. Org. Chem. 2001; 66: 7979
  • 69 Ouellet SG, Tuttle JB, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 32
  • 70 Corey EJ, Rohde JJ, Fischer A, Azimioara MD. Tetrahedron Lett. 1997; 38: 33
  • 71 Corey EJ, Rohde JJ. Tetrahedron Lett. 1997; 38: 37
  • 72 Grayson MN, Yang Z, Houk KN. J. Am. Chem. Soc. 2017; 139: 7717
  • 73 Li Y, Jackson KE, Charlton A, Le Neve-Foster B, Khurshid A, Rudy HK. A, Thompson AL, Paton RS, Hodgson DM. J. Org. Chem. 2017; 82: 10479
  • 74 Yang L, Brazier JB, Hubbard TA, Rogers DM, Cockroft SL. Angew. Chem. Int. Ed. 2016; 55: 912
  • 75 Yang L, Adam C, Nichol GS, Cockroft SL. Nat. Chem. 2013; 5: 1006
  • 76 Luccarelli J, Paton RS. J. Org. Chem. 2019; 84: 613
  • 77 Li X, Liu P, Houk KN, Birman VB. J. Am. Chem. Soc. 2008; 130: 13836
  • 78 Neufeldt SR, Jiménez-Osés G, Comins DL, Houk KN. J. Org. Chem. 2014; 79: 11609
  • 79 Lai W, Yao J, Shaik S, Chen H. J. Chem. Theory Comput. 2012; 8: 2991
  • 80 Shoja A, Zhai JY, Reid JP. ACS Catal. 2021; 11: 11897
  • 81 Simón L. Org. Biomol. Chem. 2018; 16: 2225
  • 82 Uyeda C, Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 5062
  • 83 Reid JP, Hu M, Ito S, Huang B, Hong CM, Xiang H, Sigman MS, Toste FD. Chem. Sci. 2020; 11: 6450
  • 84 Giacinto P, Bottoni A, Garelli A, Miscione GP, Bandini M. ChemCatChem 2018; 10: 2442
  • 85 Duarte F, Paton RS. J. Am. Chem. Soc. 2017; 139: 8886
  • 86 Wang J, He F, Yang X. Nat. Commun. 2021; 12: 6700
  • 87 Reid JP, Ermanis K, Goodman JM. Chem. Commun. 2019; 55: 1778
  • 88 Feldman KS. Tetrahedron 2006; 62: 5003
  • 89 Smith HS, Coote SC, Sneddon HF, Procter DJ. Angew. Chem. Int. Ed. 2010; 49: 5832
  • 90 Bur SK, Padwa A. Chem. Rev. 2004; 104: 2401
  • 91 Lai J, Reid JP. Chem. Sci. 2022; 13: 11065
  • 92 List B, Kim J, Tap A, Liu L. Synlett 2017; 28: 333
  • 93 Simón L, Paton RS. J. Am. Chem. Soc. 2018; 140: 5412