Drug Res (Stuttg) 2023; 73(02): 65-69
DOI: 10.1055/a-1956-9313
Review

Saliva Sampling in Therapeutic Drug Monitoring and Physiologically Based Pharmacokinetic Modeling: Review

May Almukainzi
1   Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
› Author Affiliations

Abstract

Therapeutic drug monitoring investigations based on saliva samples can be utilized as an alternative to blood sampling for many advantages. Moreover, the development of physiologically based pharmacokinetic (PBPK) modeling tools can further help to estimate drug exposure from saliva. This review discusses the use of saliva samples and illustrates the applications and examples of PBPK modeling systems for estimating drug exposure from saliva.



Publication History

Received: 10 September 2022

Accepted: 03 October 2022

Article published online:
11 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kang J-S, Lee M-H.. Overview of Therapeutic Drug Monitoring. Korean J. Intern. Med., vol 24: p. 1 2009; DOI: 10.3904/kjim.2009.24.1.1.
  • 2 Tuzimski T, Petruczynik A.. Review of Chromatographic Methods Coupled with Modern Detection Techniques Applied in the Therapeutic Drugs Monitoring (TDM). Molecules, vol., vol 25 2020; DOI: 10.3390/molecules25174026.
  • 3 Ghareeb M, Akhlaghi F.. Alternative matrices for therapeutic drug monitoring of immunosuppressive agents using LC-MS/MS. Bioanalysis, vol 7: pp. 1037-1058 2015; DOI: 10.4155/bio.15.35.
  • 4 Bhattarai KR, Kim H-R, Chae H-J.. Compliance with Saliva Collection Protocol in Healthy Volunteers: Strategies for Managing Risk and Errors. Int. J. Med. Sci., vol 15: pp. 823-831 2018; DOI: 10.7150/ijms.25146.
  • 5 Parkin G. et al Associations between saliva and plasma cytokines and YKL-40 in cognitively-normal, older adults. Research Square 2022; DOI: 10.21203/rs.3.rs-1863157/v1.
  • 6 Corey-Bloom J, Haque AS, Park S, Nathan AS, Baker RW, Thomas EA.. Salivary levels of total huntingtin are elevated in Huntington’s disease patients. Sci. Rep., vol 8: p. 7371 2018; DOI: 10.1038/s41598-018-25095-3.
  • 7 Gutierrez A, Corey-Bloom J, Thomas EA, Desplats P.. Evaluation of Biochemical and Epigenetic Measures of Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker in Huntington’s Disease Patients. Front. Mol. Neurosci., vol 12: pp. 1-11 2020; DOI: 10.3389/fnmol.2019.00335.
  • 8 De Rose DU. et al. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. International Journal of Molecular Sciences, vol 21 2020; DOI: 10.3390/ijms21165898.
  • 9 Gordi T, Hai TN, Hoai NM, Thyberg M, Ashton M.. Use of saliva and capillary blood samples as substitutes for venous blood sampling in pharmacokinetic investigations of artemisinin. Eur. J. Clin. Pharmacol., vol 56: pp. 561-566 2000; DOI: 10.1007/s002280000179.
  • 10 Hutchinson L, Sinclair M, Reid B, Burnett K, Callan B.. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants. Br. J. Clin. Pharmacol., vol 84: pp. 1089-1108 2018; DOI: 10.1111/bcp.13553.
  • 11 Avataneo V. et al. A Non-Invasive Method for Detection of Antihypertensive Drugs in Biological Fluids: The Salivary Therapeutic Drug Monitoring. Front. Pharmacol., vol 12: pp. 1-9 2022; DOI: 10.3389/fphar.2021.755184.
  • 12 Parkin GM. et al. Saliva testing as a means to monitor therapeutic lithium levels in patients with psychiatric disorders: Identification of clinical and environmental covariates, and their incorporation into a prediction model. Bipolar Disord., vol 23: pp. 679-688 2021; DOI: 10.1111/bdi.13128.
  • 13 Kim HY. et al. Saliva for Precision Dosing of Antifungal Drugs: Saliva Population PK Model for Voriconazole Based on a Systematic Review. Front. Pharmacol., vol 11 2020; DOI: 10.3389/fphar.2020.00894.
  • 14 Patsalos PN, Berry DJ.. Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva. Ther. Drug Monit., vol 35 2013; DOI: 10.1097/FTD.0b013e31827c11e7.
  • 15 Carvalho J, Rosado T, Barroso M, Gallardo E.. Determination of antiepileptic drugs using dried saliva spots. J. Anal. Toxicol., vol 43: pp. 61-71 2019; DOI: 10.1093/jat/bky064.
  • 16 Van Den Elsen SHJ. et al. Therapeutic drug monitoring using saliva as matrix: An opportunity for linezolid, but challenge for moxifloxacin. Eur. Respir. J., vol 55 2020; DOI: 10.1183/13993003.01903-2019.
  • 17 Hamadi S, Banna F, Al-awwa I, Al-ghazawi A, Idkaidek N.. Saliva versus Blood Therapeutic Drug Monitoring of Tacrolimus in Jordanian Kidney Transplant Patients. pp. 1-5 2018; DOI: 10.19080/NAPDD.2018.04.555632.
  • 18 Idkaidek N, Arafat T.. Saliva versus Plasma Pharmacokinetics: Theory and Application of a Salivary Excretion Classification System. Mol. Pharm., vol 9: pp. 2358-2363 2012; DOI: 10.1021/mp300250r.
  • 19 Samiksha G. et al. Evaluation of Saliva as a Potential Alternative Sampling Matrix for Therapeutic Drug Monitoring of Levofloxacin in Patients with Multidrug-Resistant Tuberculosis. Antimicrob. Agents Chemother., vol 63: pp. e02379-18 2019; DOI: 10.1128/AAC.02379-18.
  • 20 Wohkittel C, Högger P, Fekete S, Romanos M, Gerlach M.. Relationship Between Amphetamine Concentrations in Saliva and Serum in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder. Ther. Drug Monit., vol 43: pp. 564-569 2021; DOI: 10.1097/FTD.0000000000000831.
  • 21 Almeida E. et al. Stability of Cocaine, Opiates, and Metabolites in Dried Saliva Spots. Molecules, vol 27 2022; DOI: 10.3390/molecules27030641.
  • 22 Han Y, Li X-L, Zhang M, Wang J, Zeng S, Min JZ.. Potential use of a dried saliva spot (DSS) in therapeutic drug monitoring and disease diagnosis. J. Pharm. Anal. 2021; DOI: 10.1016/j.jpha.2021.11.001.
  • 23 Jacques ALB, dos Santos MK, Limberger RP.. Development and Validation of a Method Using Dried Oral Fluid Spot to Determine Drugs of Abuse. J. Forensic Sci., vol 64: pp. 1906-1912 2019; DOI: 10.1111/1556-4029.14112.
  • 24 Ates HC, Roberts JA, Lipman J, Cass AEG, Urban GA, Dincer C.. On-Site Therapeutic Drug Monitoring. Trends Biotechnol., vol 38: pp. 1262-1277 2020; DOI: 10.1016/j.tibtech.2020.03.001.
  • 25 Almukainzi M, Jamali F, Aghazadeh-Habashi A, Löbenberg R.. Disease specific modeling: Simulation of the pharmacokinetics of meloxicam and ibuprofen in disease state vs. healthy conditions. Eur. J. Pharm. Biopharm., vol 100 2016; DOI: 10.1016/j.ejpb.2015.12.004.
  • 26 Bolger MB, Macwan JS, Sarfraz M, Almukainzi M, Löbenberg R.. The Irrelevance of In Vitro Dissolution in Setting Product Specifications for Drugs Like Dextromethorphan That are Subject to Lysosomal Trapping. J. Pharm. Sci., vol 108 2019; DOI: 10.1016/j.xphs.2018.09.036.
  • 27 Almukainzi M, Gabr R, Abdelhamid G, Löbenberg R.. Mechanistic understanding of the effect of renal impairment on metformin oral absorption using computer simulations. J. Pharm. Investig., vol 47 2017; DOI: 10.1007/s40005-017-0307-y.
  • 28 Almukainzi M, Lukacova V, Löbenberg R.. Modelling the Absorption of Metformin with Patients Post Gastric Bypass Surgery. J. Diabetes Metab., vol 05 2014; DOI: 10.4172/2155-6156.1000353.
  • 29 Almukainzi M.. The application of computer simulation to investigate drug absorption and bioavailability in disease states. pp. 1-152 2016; DOI: 10.7939/R3QR4P28H.
  • 30 Yang H, Yang L, Zhong X, Jiang X, Zheng L, Wang L.. Physiologically based pharmacokinetic modeling of brivaracetam and its interactions with rifampin based on CYP2C19 phenotypes. Eur. J. Pharm. Sci. p. 106258 2022; DOI: 10.1016/j.ejps.2022.106258.
  • 31 Asaumi R, Nunoya K.ichi, Yamaura Y, Taskar KS, Sugiyama Y.. Robust physiologically based pharmacokinetic model of rifampicin for predicting drug-drug interactions via P-glycoprotein induction and inhibition in the intestine, liver, and kidney. CPT Pharmacometrics Syst. Pharmacol., no. April pp. 919-933 2022; DOI: 10.1002/psp4.12807.
  • 32 Fuhr LM, Marok FZ, Mees M, Mahfoud F, Selzer D, Lehr T.. A Physiologically Based Pharmacokinetic and Pharmacodynamic Model of the CYP3A4 Substrate Felodipine for Drug–Drug Interaction Modeling. Pharmaceutics, vol 14 2022; DOI: 10.3390/pharmaceutics14071474.
  • 33 Bouzom F, Ball K, Perdaems N, Walther B.. Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit with our needs?. Biopharm. Drug Dispos., vol 33: pp. 55-71 2012; DOI: 10.1002/bdd.1767.
  • 34 Jones HM. et al. Physiologically Based Pharmacokinetic Modeling in Drug Discovery and Development: A Pharmaceutical Industry Perspective,” vol 97 2015; DOI: 10.1002/cpt.37.
  • 35 El-Khateeb E, Burkhill S, Murby S, Amirat H, Rostami-Hodjegan A, Ahmad A.. Physiological-based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20-years; in-depth analysis of applications, organizations, and platforms. Biopharm. Drug Dispos., vol 42: pp. 107-117 2021; DOI: 10.1002/bdd.2257.
  • 36 Arabyat M. et al. Therapeutic Drug Monitoring of Vancomycin in Jordanian Patients. Development of Physiologically-Based Pharmacokinetic (PBPK) Model and Validation of Class II Drugs of Salivary Excretion Classification System (SECS). Drug Res, no. EFirst 2022; DOI: 10.1055/a-1852-5391.
  • 37 Dobson NR. et al. Salivary caffeine concentrations are comparable to plasma concentrations in preterm infants receiving extended caffeine therapy. Br. J. Clin. Pharmacol., vol 82: pp. 754-761 2016; DOI: 10.1111/bcp.13001.
  • 38 Idkaidek N, Agha H, Arafat T. Saliva versus Plasma Bioequivalence of Valsartan/Hydrochlorothiazide in Humans: Validation of Classes II and IV Drugs of the Salivary Excretion Classification System. Drug Res. (Stuttg)., vol 68: pp. 54-59 2018; DOI: 10.1055/s-0043-117775.
  • 39 Alsmadi MM, AL Eitan NL, Idkaidek MN, Alzoubi HK.. The Development of a PBPK Model for Atomoxetine Using Levels in Plasma, Saliva and Brain Extracellular Fluid in Patients with Normal and Deteriorated Kidney Function. CNS & Neurological Disorders – Drug Targets, vol 21: pp. 704-716 2022; DOI: 10.2174/1871527320666210621102437.
  • 40 Idkaidek N. et al. Saliva versus Plasma Therapeutic Drug Monitoring of Gentamicin in Jordanian Preterm Infants. Development of a Physiologically-Based Pharmacokinetic (PBPK) Model and Validation of Class II Drugs of Salivary Excretion Classification System. Drug Res, vol 70: pp. 455-462 2020; DOI: 10.1055/a-1233-358.
  • 41 Timchalk C, Poet TS, Lin Y, Weitz KK, Zhao R, Thrall KD.. Development of an Integrated Microanalytical System for Analysis of Lead in Saliva and Linkage to a Physiologically Based Pharmacokinetic Model Describing Lead Saliva Secretion. AIHAJ – Am. Ind. Hyg. Assoc., vol 62: pp. 295-302 2001; DOI: 10.1080/15298660108984631.
  • 42 Timchalk C, Poet TS, Kousba AA, Campbell JA, Lin Y.. Noninvasive Biomonitoring Approaches to Determine Dosimetry and Risk Following Acute Chemical Exposure: Analysis of Lead or Organophosphate Insecticide in Saliva. J. Toxicol. Environ. Heal. Part A, vol 67: pp. 635-650 2004; DOI: 10.1080/15287390490428035.
  • 43 Alsmadi MM. et al. The development of a population physiologically based pharmacokinetic model for mycophenolic mofetil and mycophenolic acid in humans using data from plasma, saliva, and kidney tissue. Biopharm. Drug Dispos., vol 40: pp. 325-340 2019; DOI: 10.1002/bdd.2206.
  • 44 Wu N, An G.. Incorporating Pharmacological Target-Mediated Drug Disposition (TMDD) in a Whole-Body Physiologically Based Pharmacokinetic (PBPK) Model of Linagliptin in Rat and Scale-up to Human. AAPS J., vol 22: p. 125 2020; DOI: 10.1208/s12248-020-00481-w.
  • 45 Bolani B. et al. Pharmacogenetic and pharmacokinetic assays from saliva samples can guarantee personalized drug prescription. Braz. Dent. J., vol 32: pp. 3-8 2021; DOI: 10.1590/0103-6440202104059.