Subscribe to RSS
DOI: 10.1055/a-1955-5297
The Aging Human Liver: The Weal and Woe of Evolutionary Legacy
Die alternde menschliche Leber: Wohl und Wehe des evolutionären VermächtnissesDr. Heinz-Horst Deichmann-Stiftung, Wilhelm Laupitz-Stiftung

Dedication
This contribution is dedicated to the memory of the one who started it all: Nancy Leslie Rutherford Bucher, M.D. (1913 – 2017)
Abstract
Aging is characterized by the progressive decline of biological integrity and its compensatory mechanisms as well as immunological dysregulation. This goes along with an increasing risk of frailty and disease. Against this background, we here specifically focus on the aging of the human liver. For the first time, we shed light on the intertwining evolutionary underpinnings of the liver’s declining regenerative capacity, the phenomenon of inflammaging, and the biotransformation capacity in the process of aging. In addition, we discuss how aging influences the risk for developing nonalcoholic fatty liver disease, hepatocellular carcinoma, and/or autoimmune hepatitis, and we describe chronic diseases as accelerators of biological aging.
Zusammenfassung
Altern ist gekennzeichnet durch die progrediente Abnahme der biologischen Integrität und ihrer kompensatorischen Mechanismen sowie immunologische Dysregulation. Dies geht mit einem zunehmenden Risiko für Gebrechlichkeit und Krankheit einher. Vor diesem Hintergrund fokussieren wir auf die Alterung der menschlichen Leber. Dabei beleuchten wir erstmals die ineinandergreifenden evolutiven Fundamente der abnehmenden Leberregenerationsfähigkeit, des Inflammaging-Phänomens und der Biotransformationskapazität im Alterungsprozess. Zudem diskutieren wir den Einfluss des Alterns auf das Risko, eine nichtalkoholische Fettlebererkrankung, ein Hepatozelluläres Karzinom und/oder eine Autoimmunhepatitis zu entwickeln, und wir beschreiben chronische Erkrankungen als Beschleuniger des biologischen Alterns.
Schlüsselwörter
Leberregeneration - Inflammaging - Biotransformation - nicht-alkoholische Fettlebererkrankung - Hepatozelluläres Karzinom - Horvath clockKeywords
liver regeneration - inflammaging - biotransformation - nonalcoholic fatty liver disease - hepatocellular carcinoma - Horvath clockPublication History
Received: 26 September 2022
Accepted after revision: 04 December 2022
Article published online:
09 January 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Gilbert SF. Developmental Biology. 6th ed. Sunderland, MA. USA: Sinauer Associates; 2000
- 2 Canbay A, Kachru N, Haas JS. et al. Patterns and predictors of mortality and disease progression among patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2020; 52: 1185-1194
- 3 Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23: 7280
- 4 Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet 2021; 397: 2212-2224
- 5 Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin 2012; 62: 394-399
- 6
Sung H,
Ferlay J,
Siegel RL.
et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249
MissingFormLabel
- 7 Delgado-Coello B. Liver regeneration observed across the different classes of vertebrates from an evolutionary perspective. Heliyon 2021; 7: e06449
- 8 Columbano A, Shinosuka H. Liver regeneration versus direct hyperplasia. FASEB J 1996; 10: 1118-1128
- 9 Fausto N. Liver regeneration. J Hepatol 2000; 32 (Suppl. 01) 19-31
- 10 Rosselló RA, Chen CC, Dai R. et al. Mammalian genes induce partially reprogrammed pluripotent stem cells in nonmammalian vertebrate and invertebrate species. eLife 2013; 2: e00036
- 11 Khyeam S, Lee S, Huang GN. Genetic, Epigenetic, and Post-Transcriptional Basis of Divergent Tissue Regenerative Capacities Among Vertebrates. Adv Genet (Hoboken) 2021; 2: e10042
- 12 Cox AG, Goessling W. The lure of zebrafish in liver research: regulation of hepatic growth in development and regeneration. Curr Opin Genet Dev 2015; 32: 153-161
- 13 Khan S, Saxena R. Regression of Hepatic Fibrosis and Evolution of Cirrhosis: A Concise Review. Adv Anat Pathol 2021; 28: 408-414
- 14 Starzl TE. Peter Brian Medawar: father of transplantation. J Am Coll Surg 1995; 180: 332-336
- 15 Medawar PB. Chapter 2: An Unsolved Problem of Biology. In: Medawar PB. The Uniqueness of the Individual. New York: Basic Books; 1952: 44-70
- 16 Turan ZG, Parvizi P, Dönertaş HM. et al. Molecular footprint of Medawar's mutation accumulation process in mammalian aging. Aging Cell 2019; 18: e12965
- 17 Barth E, Srivastava A, Stojiljkovic M. et al. Conserved aging-related signatures of senescence and inflammation in different tissues and species. Aging (Albany NY) 2019; 11: 8556-8572
- 18 Sheedfar F, Di Biase S, Koonen D. et al. Liver diseases and aging: friends or foes?. Aging Cell 2013; 12: 950-954
- 19 Michalopoulos GK, Bhushan B. Liver regeneration: Biological and pathological mechanisms and implications. Nat. Rev. Gastroenterol. Hepatol 2021; 18: 40-55
- 20 Yagi S, Hirata M, Miyachi Y. et al. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int J Mol Sci 2020; 21: 8414
- 21 Michalopoulos GK. Liver regeneration. J Cell Physiol 2007; 213: 286-300
- 22 Bucher NLR, Swaffield MN, DiTroia JF. The Influence of Age upon the Incorporation of Thymidine-2-C14 into the DNA of Regenerating Rat Liver. Cancer Res 1964; 24: 509-512
- 23 Timchenko NA. Aging and liver regeneration. Trends Endocrinol Metab 2009; 20: 171-176
- 24 Feuda R, Dohrmann M, Pett W. et al. Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals. Curr Biol 2017; 27: 3864-3870.e4
- 25 Müller WE, Wang X, Schröder HC. Paleoclimate and evolution: emergence of sponges during the neoproterozoic. Prog Mol Subcell Biol 2009; 47: 55-77
- 26 Schuster A, Vargas S, Knapp IS. et al. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth-death clock model. BMC Evol Biol 2018; 18: 114
- 27 Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev 2016; 274: 9-15
- 28 Markiewski MM, Mastellos D, Tudoran R. et al. C3a and C3b activation products of the third component of complement (C3) are critical for normal liver recovery after toxic injury. J Immunol 2004; 173: 747-754
- 29 Clark A, Weymann A, Hartman E. et al. Evidence for non-traditional activation of complement factor C3 during murine liver regeneration. Mol Immunol 2008; 45: 3125-3132
- 30 DeAngelis RA, Markiewski MM, Kourtzelis I. et al. A complement–IL-4 regulatory circuit controls liver regeneration. J Immunol 2012; 188: 641-648
- 31 Min JS, DeAngelis RA, Reis ES. et al. Systems Analysis of the Complement-Induced Priming Phase of Liver Regeneration. J Immunol 2016; 197: 2500-2508
- 32 Markiewski MM, DeAngelis RA, Strey CW. et al. The regulation of liver cell survival by complement. J Immunol 2009; 182: 5412-5418
- 33 Ahne W. Evidence for the early appearance of interleukins and tumor necrosis factor in the phylogenesis of vertebrates. Immunol Today 1994; 15: 137
- 34 Quistad SD, Stotland A, Barott KL. et al. Evolution of TNF-induced apoptosis reveals 550 My of functional conservation. Proc Natl Acad Sci U S A 2014; 111: 9567-9572
- 35 Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015; 15: 335-349
- 36 Strey CW, Markiewski M, Mastellos D. et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 2003; 198: 913-923
- 37 De Angelis RA, Markiewski MM, Lambris JD. Liver regeneration: a link to inflammation through complement. Adv Exp Med Biol 2006; 586: 17-34
- 38 Albrecht JH. MET and epidermal growth factor signaling: The pillars of liver regeneration?. Hepatology 2016; 64: 1427-1429
- 39 Donate LE, Gherardi E, Srinivasan N. et al. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Protein Sci 1994; 3: 2378-2394
- 40 Barberán S, Martín-Durán JM, Cebrià F. Evolution of the EGFR pathway in Metazoa and its diversification in the planarian Schmidtea mediterranea. Sci Rep 2016; 6: 28071
- 41 Lindroos PM, Zarnegar R, Michalopoulos GK. Hepatocyte growth factor (hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration. Hepatology 1991; 13: 743-750
- 42 Mars WM, Liu ML, Kitson RP. et al. Immediate early detection of urokinase receptor after partial hepatectomy and its implications for initiation of liver regeneration. Hepatology 1995; 21: 1695-1701
- 43 Kirkegaard P, Olsen PS, Poulsen SS. et al. Exocrine secretion of epidermal growth factor from Brunner’s glands. Stimulation by VIP and acetylcholine. Regul Pept 1983; 7: 367-372
- 44 Krause WJ. Brunner’s glands: a structural, histochemical and pathological profile. Prog Histochem Cytochem 2000; 35: 259-367
- 45 Paranjpe S, Bowen WC, Mars WM. et al. Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology 2016; 64: 1711-1724
- 46 Huminiecki L, Goldovsky L, Freilich S. et al. Emergence, development and diversification of the TGF-β signaling pathway within the animal kingdom. BMC Evol Biol 2009; 9: 28
- 47 Zheng S, Long J, Liu Z. et al. Identification and evolution of TGF-β signaling pathway members in twenty-four animal species and expression in Tilapia.. Int J Mol Sci 2018; 19: 1154
- 48 Tao Y, Wang M, Chen E. et al. Liver Regeneration: Analysis of the Main Relevant Signaling Molecules. Mediators Inflamm 2017; 2017: 4256352
- 49 Molven A, Njølstad PR, Fjose A. Genomic structure and restricted neural expression of the zebrafish wnt-1 (int-1) gene. EMBO J 1991; 10: 799-807
- 50 Liu H, Fergusson MM, Castilho RM. et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 2007; 317: 803-806
- 51 He S, Tang S. WNT/β-catenin signaling in the development of liver cancers. Biomed Pharmacother 2020; 132: 110851
- 52 Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev 2011; 10: 336-345
- 53 Tajiri K, Shimizu Y. Liver physiology and liver diseases in the elderly. World J Gastroenterol 2013; 19: 8459-8467
- 54 Franceschi C, Bonafè M, Valensin S. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908: 244-254
- 55 Rizvi S, Gawrieh S. Autoimmune Hepatitis in the Elderly: Diagnosis and Pharmacologic Management. Drugs Aging 2018; 35: 589-602
- 56 Fried LP, Tangen CM, Walston J. et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56 (03) M146-56
- 57 Marcos-Pérez D, Sánchez-Flores M, Proietti S. et al. Association of inflammatory mediators with frailty status in older adults: results from a systematic review and meta-analysis. Geroscience 2020; 42: 1451-1473
- 58 Peters JH, Gieseler R, Thiele B. et al. Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunol Today 1996; 17: 273-278
- 59 Gieseler R, Heise D, Soruri A. et al. In-vitro differentiation of mature dendritic cells from human blood monocytes. Dev Immunol 1998; 6: 25-39
- 60 Collin M, Bigley V, Haniffa M. et al. Human dendritic cell deficiency: the missing ID?. Nat Rev Immunol 2011; 11: 575-583
- 61 Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev 2011; 10: 336-345
- 62 Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol 2021; 12: 708186
- 63 Gale RP, Sparkes RS, Golde DW. Bone marrow origin of hepatic macrophages (Kupffer cells) in humans. Science 1978; 201: 937-938
- 64 Schulz C, Gomez Perdiguero E, Chorro L. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012; 336: 86-90
- 65 Gomez Perdiguero E, Klapproth K, Schulz C. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015; 518: 547-551
- 66 Maeso-Díaz R, Ortega-Ribera M, Fernández-Iglesias A. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 2018; 17: e12829
- 67 Wang X, Rao H, Zhao J. et al. STING expression in monocyte-derived macrophages is associated with the progression of liver inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Lab Invest 2020; 100: 542-552
- 68 Ye Y, Guo J, Xiao P. et al. Macrophages-induced long noncoding RNA H19 up-regulation triggers and activates the miR-193b/MAPK1 axis and promotes cell aggressiveness in hepatocellular carcinoma. Cancer Lett 2020; 469: 310-322
- 69 Mohammed S, Thadathil N, Selvarani R. et al. Necroptosis contributes to chronic inflammation and fibrosis in aging liver. Aging Cell 2021; 20: e13512
- 70 Wan Y, Li X, Slevin E. et al. Endothelial dysfunction in pathological processes of chronic liver disease during aging. FASEB J 2022; 36: e22125
- 71 Trivedi P, Wang S, Friedman SL. The Power of Plasticity-Metabolic Regulation of Hepatic Stellate Cells. Cell Metab 2021; 33: 242-257
- 72 Saile B, Ramadori G. Inflammation, damage repair and liver fibrosis – role of cytokines and different cell types. Z Gastroenterol 2007; 45: 77-86
- 73 Anantharaju A, Feller A, Chedid A. Aging Liver. A review. Gerontology 2002; 48: 343-353
- 74 Yang TY, Gao Z, Liang NC. Sex-Dependent Wheel Running Effects on High Fat Diet Preference, Metabolic Outcomes, and Performance on the Barnes Maze in Rats. Nutrients 2020; 12: 2721
- 75 Von Bank H, Kirsh C, Simcox J. Aging adipose: Depot location dictates age-associated expansion and dysfunction. Ageing Res Rev 2021; 67: 101259
- 76 Zamboni M, Nori N, Brunelli A. et al. How does adipose tissue contribute to inflammageing?. Exp Gerontol 2021; 143: 111162
- 77 Cheng Y, An B, Jiang M. et al. Association of Tumor Necrosis Factor-alpha Polymorphisms and Risk of Coronary Artery Disease in Patients With Non-alcoholic Fatty Liver Disease. Hepat Mon 2015; 15: e26818
- 78 Simon TG, Trejo MEP, McClelland R. et al. Circulating Interleukin-6 is a biomarker for coronary atherosclerosis in nonalcoholic fatty liver disease: Results from the Multi-Ethnic Study of Atherosclerosis. Int J Cardiol 2018; 259: 198-204
- 79 Cazac GD, Lăcătușu CM, Mihai C. et al. New Insights into Non-Alcoholic Fatty Liver Disease and Coronary Artery Disease: The Liver-Heart Axis. Life (Basel) 2022; 12: 1189
- 80 Leven AS, Gieseler RK, Schlattjan M. et al. Association of cell death mechanisms and fibrosis in visceral white adipose tissue with pathological alterations in the liver of morbidly obese patients with NAFLD. Adipocyte 2021; 10: 558-573
- 81 Baars T, Gieseler RK, Patsalis PC. et al. Towards harnessing the value of organokine crosstalk to predict the risk for cardiovascular disease in non-alcoholic fatty liver disease. Metabolism 2022; 130: 155179
- 82 Amsterdam D, Ostrov BE. The Impact of the Microbiome on Immunosenescence. Immunol Invest 2018; 47: 801-811
- 83 Del Giudice G, Goronzy JJ, Grubeck-Loebenstein B. et al. Fighting Against a Protean Enemy: Immunosenescence, Vaccines, and Healthy Aging. NPJ Aging Mech Dis 2018; 4: 1
- 84 Azman KF, Safdar A, Zakaria R. D-galactose-induced liver aging model: Its underlying mechanisms and potential therapeutic interventions. Exp Gerontol 2021; 150: 111372
- 85 Morsiani C, Bacalini MG, Santoro A. et al. The peculiar aging of human liver: A geroscience perspective within transplant context. Ageing Res Rev 2019; 51: 24-34
- 86 Schreiter T, Gieseler RK, Vílchez-Vargas R. et al. Transcriptome-Wide Analysis of Human Liver Reveals Age-Related Differences in the Expression of Select Functional Gene Clusters and Evidence for a PPP1R10-Governed ‘Aging Cascade’. Pharmaceutics 2021; 13: 2009
- 87 Capri M, Olivieri F, Lanzarini C. et al. Identification of miR-31–5p, miR-141–3p, miR-200c-3p, and GLT1 as human liver aging markers sensitive to donor-recipient age-mismatch in transplants. Aging Cell 2017; 16: 262-272
- 88 Palacios-Pedrero MÁ, Osterhaus ADME, Becker T. et al. Aging and Options to Halt Declining Immunity to Virus Infections. Front Immunol 2021; 12: 681449
- 89 Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev 2008; 60: 311-357
- 90 Ramadori G, Armbrust T. Cytokines in the liver. Eur J Gastroenterol Hepatol 2001; 13: 777-784
- 91 Joshi-Barve S, Barve S, Amancherla K. et al. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 2007; 46: 823-830
- 92 Gómez-Hurtado I, Gallego-Durán R, Zapater P. et al. Bacterial antigen translocation and age as BMI-independent contributing factors on systemic inflammation in NAFLD patients. Liver Int 2020; 40: 2182-2193
- 93 Sheedfar F, Di Biase S, Koonen D. et al. Liver diseases and aging: friends or foes?. Aging Cell 2013; 12: 950-954
- 94 Wang Y, Fu Z, Li X. et al. Cytoplasmic DNA sensing by KU complex in aged CD4+ T cell potentiates T cell activation and aging-related autoimmune inflammation. Immunity 2021; 54: 632-647
- 95 Gindin Y, Gaggar A, Lok AS. et al. DNA Methylation and Immune Cell Markers Demonstrate Evidence of Accelerated Aging in Patients with Chronic Hepatitis B Virus or Hepatitis C Virus, with or without Human Immunodeficienct Virus Co-infection. Clin Infect Dis 2021; 73: e184-e190
- 96 Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14: R115
- 97 Horvath S, Pirazzini C, Bacalini MG. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 2015; 7: 1159-1170
- 98 Loomba R, Gindin Y, Jiang Z. et al. DNA methylation signatures reflect aging in patients with nonalcoholic steatohepatitis. JCI Insight 2018; 3: 1-9
- 99 Tanaka M, Miyajima A. Liver regeneration and fibrosis after inflammation. Inflamm Regen 2016; 36: 19
- 100 Schmucker DL. Aging and the liver: an update. J Gerontol A Biol Sci Med Sci 1998; 53: B315-B320
- 101 Lucena MI, Sanabria J, García-Cortes M. et al. Drug-induced liver injury in older people. Lancet Gastroenterol Hepatol 2020; 5: 862-874
- 102 Sameri S, Samadi P, Dehghan R. et al. Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review. Curr Stem Cell Res Ther 2020; 15: 362-378
- 103 Xu F, Hua C, Tautenhahn HM. et al. The Role of Autophagy for the Regeneration of the Aging Liver. Int J Mol Sci 2020; 21: 3606
- 104 Bellanti F, Vendemiale G. The Aging Liver: Redox Biology and Liver Regeneration. Antioxid Redox Signal 2021; 35 (10) 832-847
- 105 Kundu D, Kennedy L, Meadows V. et al. The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expr 2020; 20: 77-88
- 106 Liu Y, Wang J, Huang Z. et al. Environmental pollutants exposure: A potential contributor for aging and age-related diseases. Environ Toxicol Pharmacol 2021; 83: 103575
- 107 Shen J, Tower J. Effects of light on aging and longevity. Ageing Res Rev 2019; 53: 100913
- 108 Stern K, Hinds EG, Askonas BA. Ageing and detoxication; studies in hippuric acid synthesis during psychoses of the involutional and old age group. Am J Psychiatry 1945; 102: 325-329
- 109 Probstein JG, Londe S. Studies of liver function by means of Quick’s hippuric acid test. Ann Surg 1940; 111: 230-245
- 110 Hunt NJ, Kang SWS, Lockwood GP. et al. Hallmarks of Aging in the Liver. Comput Struct Biotechnol J 2019; 17: 1151-1161
- 111 Chung HS, Choi KM. Organokines in disease. Adv Clin Chem 2020; 94: 261-321
- 112 Pallister T, Jackson MA, Martin TC. et al. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome. Sci Rep 2017; 7: 13670
- 113 Hoyles L, Fernández-Real JM, Federici M. et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med 2018; 24: 1070-1080
- 114 Brial F, Chilloux J, Nielsen T. et al. Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut 2021; 70: 2105-2114
- 115 Lee KS, Cho Y, Kim H. et al. Association of Metabolomic Change and Treatment Response in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10: 1216
- 116 Rikans LE. Influence of aging on chemically induced hepatotoxicity: role of age-related changes in metabolism. Drug Metab Rev 1989; 20: 87-110
- 117 Sowa JP, Heider D, Bechmann LP. et al. Novel algorithm for non-invasive assessment of fibrosis in NAFLD. PLoS One 2013; 8: e62439
- 118 Sowa JP, Atmaca Ö, Kahraman A. et al. Non-invasive separation of alcoholic and non-alcoholic liver disease with predictive modeling. PLoS One 2014; 9: e101444
- 119 Canbay A, Kälsch J, Neumann U. et al. Non-invasive assessment of NAFLD as systemic disease – A machine learning perspective. PLoS One 2019; 14: e0214436
- 120 Spänig S, Emberger-Klein A, Sowa JP. et al. The virtual doctor: An interactive clinical-decision-support system based on deep learning for non-invasive prediction of diabetes. Artif Intell Med 2019; 100: 101706
- 121 Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature 2015; 521: 452-459
- 122 Schadinger SE, Bucher NLR, Schreiber BM. et al. PPARγ2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 2005; 288: E1195-E1205
- 123 NN. Dr. Nancy L.R. Bucher (1913–2017). American Academy of Arts and Sciences. Last Updated: March 2022. Source:. Accessed September 23, 2022 at: https://www.amacad.org/person/nancy-lr-bucher