CC BY-NC-ND 4.0 · Organic Materials 2022; 4(03): 137-145
DOI: 10.1055/a-1932-0463
Supramolecular Chemistry
Short Review

Recent Concepts for Supramolecular 2D Materials

Lucía Gallego#
a   Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
,
a   Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
,
a   Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
› Author Affiliations


Abstract

Bottom-up approaches are one strategy geared towards designing novel two-dimensional materials. Supramolecular polymerization has proven to be an effective way of obtaining these architectures due to the increasing control and tunability offered by different functional groups, which are not afforded by conventional polymerization. In this short review, we highlight examples of supramolecular assemblies held together by well-known non-covalent interactions, as well as new approaches that are becoming more relevant in recent years.

# These authors contributed equally.




Publication History

Received: 02 July 2022

Accepted after revision: 25 August 2022

Accepted Manuscript online:
26 August 2022

Article published online:
20 September 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Burmeister D, Trunk MG, Bojdys MJ. Chem. Soc. Rev. 2021; 50: 11559
    • 1b Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Chem. Rev. 2022; 122: 442
    • 1c Payamyar P, King BT, Öttinger HC, Schlüter AD. Chem. Commun. 2016; 52: 18
    • 1d Li X, Yadav P, Loh KP. Chem. Soc. Rev. 2020; 49: 4835
    • 1e Zhao K, Zhu W, Liu S, Wei X, Ye G, Su Y, He Z. Nanoscale Adv. 2020; 2: 536
    • 2a Wang J, Malgras V, Sugahara Y, Yamauchi Y. Nat. Commun. 2021; 12: 3563
    • 2b Panda PK, Grigoriev A, Mishra YK, Ahuja R. Nanoscale Adv. 2020; 2: 70
    • 3a Brill AR, Koren E, de Ruiter G. J. Mater. Chem. 2021; 9: 11569
    • 3b Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F. Nanoscale 2011; 3: 20
    • 3c Aryal UK, Ahmadpour M, Turkovic V, Rubahn H-G, Di Carlo A, Madsen M. Nano Energy 2022; 94: 106833
    • 4a Bi S, Yang C, Zhang W, Xu J, Liu L, Wu D, Wang X, Han Y, Liang Q, Zhang F. Nat. Commun. 2019; 10: 2467
    • 4b Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H. Nanoscale 2020; 12: 3535
    • 4c Lee CW, Suh JM, Jang HW. Front. Chem. 2019; 7: 708
    • 5a Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science 2004; 306: 666
    • 5b Geim AK, Novoselov KS. Nat. Mater. 2007; 6: 183
    • 6a Chen J, Gao X, Zheng Q, Liu J, Meng D, Li H, Cai R, Fan H, Ji Y, Wu X. ACS Nano 2021; 15: 15114
    • 6b Mourdikoudis S, Sofer Z. CrystEngComm 2021; 23: 7876
    • 6c Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Haider J, Khan M, Khan Q, Maqbool M. Adv. Colloid Interface Sci. 2022; 300: 102597
    • 7a Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHK. K, Lange RFM, Lowe JKL, Meijer EW. Science 1997; 278: 1601
    • 7b Aida T, Meijer EW, Stupp SI. Science 2012; 335: 813
    • 7c De Greef TFA, Smulders MMJ, Wolffs M, Schenning APH. J, Sijbesma RP, Meijer EW. Chem. Rev. 2009; 109: 5687
    • 8a Zhang Q, Tang D, Zhang J, Ni R, Xu L, He T, Lin X, Li X, Qiu H, Yin S, Stang PJ. J. Am. Chem. Soc. 2019; 141: 17909
    • 8b Herbst F, Seiffert S, Binder WH. Polym. Chem. 2012; 3: 3084
  • 9 Goswami A, Ghosh D, Chernyshev VV, Dey A, Pradhan D, Biradha K. ACS Appl. Mater. Interfaces 2020; 12: 33679
    • 10a Steiner T. Angew. Chem. Int. Ed. 2002; 41: 48
    • 10b Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. J. Am. Chem. Soc. 2010; 132: 6498
    • 10c Scheiner S. J. Chem. Phys. 2020; 153: 140901
    • 10d Müller-Dethlefs K, Hobza P. Chem. Rev. 2000; 100: 143
  • 11 Insua I, Montenegro J. J. Am. Chem. Soc. 2020; 142: 300
  • 12 Lin Y, Thomas MR, Gelmi A, Leonardo V, Pashuck ET, Maynard SA, Wang Y, Stevens MM. J. Am. Chem. Soc. 2017; 139: 13592
  • 13 Chen J, Zhu E, Liu J, Zhang S, Lin Z, Duan X, Heinz H, Huang Y, De Yoreo JJ. Science 2018; 362: 1135
  • 14 Wu Y, Mao X, Zhang M, Zhao X, Xue R, Di S, Huang W, Wang L, Li Y, Li Y. Adv. Mater. 2021; 33: 2106079
  • 15 Grimme S. Angew. Chem. Int. Ed.; 2008 47. 3430
  • 16 Li Y, Dong X, Yu M, Liu W, Nie Y, Zhang J, Xie L, Xu C, Liu J, Huang W. Small 2021; 17: 2102060
  • 17 Lewandowska U, Zajaczkowski W, Pisula W, Ma Y, Li C, Müllen K, Wennemers H. Chem. Eur. J. 2016; 22: 3804
  • 18 Lewandowska U, Zajaczkowski W, Corra S, Tanabe J, Borrmann R, Benetti EM, Stappert S, Watanabe K, Ochs NAK, Schaeublin R, Li C, Yashima E, Pisula W, Müllen K, Wennemers H. Nat. Chem. 2017; 9: 1068
    • 19a Kissel P, Erni R, Schweizer WB, Rossell MD, King BT, Bauer T, Götzinger S, Schlüter AD, Sakamoto J. Nat. Chem. 2012; 4: 287
    • 19b Kory MJ, Wörle M, Weber T, Payamyar P, van de Poll SW, Dshemuchadse J, Trapp N, Schlüter AD. Nat. Chem. 2014; 6: 779
  • 20 Müller V, Hinaut A, Moradi M, Baljozovic M, Jung TA, Shahgaldian P, Möhwald H, Hofer G, Kröger M, King BT, Meyer E, Glatzel T, Schlüter AD. Angew. Chem. 2018; 130: 10744
  • 21 Wang Y, Kim Y, Lee M. Angew. Chem. Int. Ed. 2016; 55: 13122
  • 22 Weingarten AS, Kazantsev RV, Palmer LC, McClendon M, Koltonow AR, Samuel APS, Kiebala DJ, Wasielewski MR, Stupp SI. Nat. Chem. 2014; 6: 964
  • 23 Seiki N, Shoji Y, Kajitani T, Ishiwari F, Kosaka A, Hikima T, Takata M, Someya T, Fukushima T. Science 2015; 348: 1122
  • 24 Norvez S. J. Org. Chem. 1993; 58: 2414
    • 25a Kang J, Miyajima D, Mori T, Inoue Y, Itoh Y, Aida T. Science 2015; 347: 646
    • 25b Mayoral MJ, Guilleme J, Calbo J, Aragó J, Aparicio F, Ortí E, Torres T, González-Rodríguez D. J. Am. Chem. Soc. 2020; 142: 21017
    • 25c Filatov AS, Scott LT, Petrukhina MA. Cryst. Growth Des. 2010; 10: 4607
    • 26a Kato K, Takaba K, Maki-Yonekura S, Mitoma N, Nakanishi Y, Nishihara T, Hatakeyama T, Kawada T, Hijikata Y, Pirillo J, Scott LT, Yonekura K, Segawa Y, Itami K. J. Am. Chem. Soc. 2021; 143: 5465
    • 26b Urgel JI, Di Giovannantonio M, Segawa Y, Ruffieux P, Scott LT, Pignedoli CA, Itami K, Fasel R. J. Am. Chem. Soc. 2019; 141: 13158
  • 27 Woods JF, Gallego L, Pfister P, Maaloum M, Vargas Jentzsch A, Rickhaus M. Nat. Commun. 2022; 13: 3681
  • 28 Fukui T, Kawai S, Fujinuma S, Matsushita Y, Yasuda T, Sakurai T, Seki S, Takeuchi M, Sugiyasu K. Nat. Chem. 2017; 9: 493
  • 29 He C, Wu D, Zhang F, Xue M, Zhuang X, Qiu F, Feng X. ChemPhysChem 2013; 14: 2954
  • 30 Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science 2004; 304: 1481