CC BY-NC-ND 4.0 · Organic Materials 2022; 4(03): 127-136
DOI: 10.1055/a-1927-8947
Supramolecular Chemistry
Original Article

Development of Rotaxanes as E-Field-Sensitive Superstructures in Plasmonic Nano-Antennas

a   Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
,
b   Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
,
René Kullock
b   Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
,
Yves Aeschi
a   Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
,
b   Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
,
a   Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
c   Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
d   Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), Guangzhou 510275, P. R. of China
› Institutsangaben


Abstract

We present the concept of electrostatic field-driven supramolecular translation within electrically connected plasmonic nano-antennas. The antenna serves as an anchoring point for the mechanically interlocked molecules, as an electrode for the electrostatic field, and as an amplifier of the antenna-enhanced fluorescence. The synthesis of a push–pull donor–π–acceptor chromophore with optical properties aligned to the antenna resonance is described and its immobilization on the surface is demonstrated. Photoluminescence experiments of the chromophore on a gold nano-antenna are shown, highlighting the molecule–antenna coupling and resulting emission intensity increase. The successful synthesis of an electrostatic field-sensitive [2]rotaxane in water is described and the tightrope walk between functionality and water solubility is illustrated by unsuccessful designs. In solution, an enhanced fluorescence quantum yield is observed for the chromophore comprising the mechanically interlocked [2]rotaxane in water and DMSO compared to the reference rod, ideal for future experiments in plasmonic nano-antennas.

Primary Data

The primary data generated during this study are available at: https://doi.org/10.5281/zenodo.6777943.



Publikationsverlauf

Eingereicht: 01. Juli 2022

Angenommen nach Revision: 14. August 2022

Accepted Manuscript online:
22. August 2022

Artikel online veröffentlicht:
20. September 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bruns CJ, Stoddart JF. The Nature of the Mechanical Bond: From Molecules to Machines. Hoboken, New Jersey: Wiley; 2017
  • 2 Kay ER, Leigh DA, Zerbetto F. Angew. Chem. Int. Ed. 2007; 46: 72
  • 3 Xue M, Yang Y, Chi X, Yan X, Huang F. Chem. Rev. 2015; 115: 7398
  • 4 Yao B, Sun H, Yang L, Wang S, Liu X. Front. Chem. 2022; 9. DOI: 10.3389/fchem.2021.832735.
  • 5 Schröder HV, Schalley CA. Chem. Sci. 2019; 10: 9626
  • 6 Tian H, Wang Q-C. Chem. Soc. Rev. 2006; 35: 361
  • 7 Aprahamian I. ACS Cent. Sci. 2020; 6: 347
  • 8 Coronado E, Gaviña P, Tatay S. Chem. Soc. Rev. 2009; 38: 1674
  • 9 Bermudez V, Capron N, Gase T, Gatti FG, Kajzar F, Leigh DA, Zerbetto F, Zhang S. Proc. SPIE 2000; 4106: 194
  • 10 Bermudez V, Capron N, Gase T, Gatti FG, Kajzar F, Leigh DA, Zerbetto F, Zhang S. Nature 2000; 406: 608
  • 11 Sánchez-Quesada J, Saghatelian A, Cheley S, Bayley H, Ghadiri MR. Angew. Chem. Int. Ed. 2004; 43: 3063
  • 12 Biesemans A, Soskine M, Maglia G. Nano Lett. 2015; 15: 6076
  • 13 Chu J, González-López M, Cockroft SL, Amorin M, Ghadiri MR. Angew. Chem. Int. Ed. 2010; 49: 10106
  • 14 Cockroft SL, Chu J, Amorin M, Ghadiri MR. J. Am. Chem. Soc. 2008; 130: 818
  • 15 Feng J, Martin-Baniandres P, Booth MJ, Veggiani G, Howarth M, Bayley H, Rodriguez-Larrea D. Commun. Biol. 2020; 3: 1
  • 16 Prangsma JC, Kern J, Knapp AG, Grossmann S, Emmerling M, Kamp M, Hecht B. Nano Lett. 2012; 12: 3915
  • 17 Biagioni P, Huang J-S, Hecht B. Rep. Prog. Phys. 2012; 75: 024402
  • 18 Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M, Hecht B. Nat. Photonics 2015; 9: 582
  • 19 Kullock R, Ochs M, Grimm P, Emmerling M, Hecht B. Nat. Commun. 2020; 11: 115
  • 20 Francisco AP, Botequim D, Prazeres DMF, Serra VV, Costa SMB, Laia CAT, Paulo PMR. J. Phys. Chem. Lett. 2019; 10: 1542
  • 21 Bardhan R, Grady NK, Cole JR, Joshi A, Halas NJ. ACS Nano 2009; 3: 744
  • 22 Anger P, Bharadwaj P, Novotny L. Phys. Rev. Lett. 2006; 96: 113002
  • 23 Chi YS, Byon HR, Lee BS, Kong B, Choi HC, Choi IS. Adv. Funct. Mater. 2008; 18: 3395
  • 24 Ferguson SB, Seward EM, Diederich F, Sanford EM, Chou A, Inocencio-Szweda P, Knobler CB. J. Org. Chem. 1988; 53: 5593
  • 25 Anderson S, Aplin RT, Claridge TDW, Goodson III T, Maciel AC, Rumbles G, Ryan JF, Anderson HL. J. Chem. Soc., Perkin Trans. 1 1998; 2383
  • 26 Jucker L, Aeschi Y, Mayor M. Org. Chem. Front. 2021; 8: 4399
  • 27 Taylor PN, Hagan AJ, Anderson HL. Org. Biomol. Chem. 2003; 1: 3851
  • 28 Anderson S, Anderson HL. Angew. Chem. Int. Ed. Engl. 1996; 35: 1956
  • 29 Aeschi Y, Drayss-Orth S, Valášek M, Raps F, Häussinger D, Mayor M. Eur. J. Org. Chem. 2017; 2017: 4091
  • 30 Aeschi Y, Jucker L, Häussinger D, Mayor M. Eur. J. Org. Chem. 2019; 2019: 3384
  • 31 Béthencourt MI, Srisombat L, Chinwangso P, Lee TR. Langmuir 2009; 25: 1265
  • 32 Zhao L, Ming T, Chen H, Liang Y, Wang J. Nanoscale 2011; 3: 3849
  • 33 Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar TA, Feldmann J. Phys. Rev. Lett. 2008; 100: 203002
  • 34 Ming T, Zhao L, Yang Z, Chen H, Sun L, Wang J, Yan C. Nano Lett. 2009; 9: 3896
  • 35 Aeschi Y, Drayss-Orth S, Valášek M, Häussinge D, Mayor M. Chem. Eur. J. 2019; 25: 285
  • 36 Ferguson SB, Sanford EM, Seward EM, Diederich F. J. Am. Chem. Soc. 1991; 113: 5410
  • 37 Zhang Y, Zhao C, Yang J, Kapiamba M, Haze O, Rothberg LJ, Ng M-K. J. Org. Chem. 2006; 71: 9475
  • 38 Ghosh K, Yang H-B, Northrop BH, Lyndon MM, Zheng Y-R, Muddiman DC, Stang PJ. J. Am. Chem. Soc. 2008; 130: 5320