CC BY-NC-ND 4.0 · Horm Metab Res 2022; 54(12): 795-812
DOI: 10.1055/a-1908-7790
Review

Immune Checkpoint Inhibitor Therapy in Neuroendocrine Tumors

1   Endocrinology, National Institutes of Health Clinical Center, Bethesda, United States
,
Namrata Vijayvergia
2   Oncology, Fox Chase Cancer Center, Philadelphia, United States
,
Jian Q Yu
3   Nuclear Medicine, Fox Chase Cancer Center, Philadelphia, United States
,
4   National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
,
Christian A. Koch*
5   Medicine/Endocrinology, The University of Tennessee Health Science Center, Memphis, United States
6   Medicine, Fox Chase Cancer Center, Philadelphia, United States
› Author Affiliations

Abstract

Neuroendocrine tumors (NETs) occur in various regions of the body and present with complex clinical and biochemical phenotypes. The molecular underpinnings that give rise to such varied manifestations have not been completely deciphered. The management of neuroendocrine tumors (NETs) involves surgery, locoregional therapy, and/or systemic therapy. Several forms of systemic therapy, including platinum-based chemotherapy, temozolomide/capecitabine, tyrosine kinase inhibitors, mTOR inhibitors, and peptide receptor radionuclide therapy have been extensively studied and implemented in the treatment of NETs. However, the potential of immune checkpoint inhibitor (ICI) therapy as an option in the management of NETs has only recently garnered attention. Till date, it is not clear whether ICI therapy holds any distinctive advantage in terms of efficacy or safety when compared to other available systemic therapies for NETs. Identifying the characteristics of NETs that would make them (better) respond to ICIs has been challenging. This review provides a summary of the current evidence on the value of ICI therapy in the management of ICIs and discusses the potential areas for future research.

* * Co-senior authors




Publication History

Received: 30 June 2022

Accepted after revision: 25 July 2022

Accepted Manuscript online:
25 July 2022

Article published online:
02 September 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Yao JC, Hassan M, Phan A. et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063-3072
  • 2 Ito T, Sasano H, Tanaka M. et al. Epidemiological study of gastroenteropancreatic neuroendocrine tumors in Japan. J Gastroenterol 2010; 45: 234-243
  • 3 Fraenkel M, Kim MK, Faggiano A. et al. Epidemiology of gastroenteropancreatic neuroendocrine tumours. Best Pract Res Clin Gastroenterol 2012; 26: 691-703
  • 4 Vinik AI, Woltering EA, Warner RR. et al. NANETS consensus guidelines for the diagnosis of neuroendocrine tumor. Pancreas 2010; 39: 713-734
  • 5 Rosai J. The origin of neuroendocrine tumors and the neural crest saga. Mod Pathol 2011; 24: S53-S57
  • 6 Kulke MH, Shah MH, Benson AB. et al. Neuroendocrine tumors, version 1.2015. J Natl Compr Canc Netw 2015; 13: 78-108
  • 7 Koch CA, Petersenn S. Neuroendocrine neoplasms - think about it and choose the most appropriate diagnostic and therapeutic steps. Rev Endocr Metab Disord 2018; 19: 107-109
  • 8 Koch CA, Petersenn S. Black swans - neuroendocrine tumors of rare locations. Rev Endocr Metab Disord 2018; 19: 111-121
  • 9 Koch CA, Azumi N, Furlong MA. et al. Carcinoid syndrome caused by an atypical carcinoid of the uterine cervix. J Clin Endocrinol Metab 1999; 84: 4209-4213
  • 10 Singer J, Werner F, Koch CA. et al. Ectopic Cushing’s syndrome caused by a well differentiated ACTH-secreting neuroendocrine carcinoma of the ileum. Exp Clin Endocrinol Diabetes 2010; 118: 524-529
  • 11 Wells SA, Asa SL, Dralle H. et al. Revised American thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015; 25: 567-610
  • 12 Chen H, Sippel RS, O’Dorisio MS. et al. The north American neuroendocrine tumor society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas 2010; 39: 775-783
  • 13 Assarzadegan N, Montgomery E. What is new in the 2019 World Health Organization (WHO) classification of tumors of the digestive system: review of selected updates on neuroendocrine neoplasms, appendiceal tumors, and molecular testing. Arch Pathol Lab Med 2021; 145: 664-677
  • 14 Vélayoudom-Céphise FL, Duvillard P, Foucan L. et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous?. Endocr Relat Cancer 2013; 20: 649-657
  • 15 Strosberg JR, Halfdanarson TR, Bellizzi AM. et al. The north American neuroendocrine tumor society consensus guidelines for surveillance and medical management of midgut neuroendocrine tumors. Pancreas 2017; 46: 707-714
  • 16 Singh S, Bergsland EK, Card CM. et al. Commonwealth neuroendocrine tumour research collaboration and the north American neuroendocrine tumor society guidelines for the diagnosis and management of patients with lung neuroendocrine tumors: an international collaborative endorsement and update of the 2015 European neuroendocrine tumor society expert consensus guidelines. J Thorac Oncol 2020; 15: 1577-1598
  • 17 Fishbein L, Del Rivero J, Else T. et al. The north American neuroendocrine tumor society consensus guidelines for surveillance and management of metastatic and/or unresectable pheochromocytoma and paraganglioma. Pancreas 2021; 50: 469-493
  • 18 Grandhi MS, Lafaro KJ, Pawlik TM. Role of locoregional and systemic approaches for the treatment of patients with metastatic neuroendocrine tumors. J Gastrointest Surg 2015; 19: 2273-2282
  • 19 Kennedy A, Bester L, Salem R. et al. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-liver-metastases consensus conference. HPB (Oxford) 2015; 17: 29-37
  • 20 Shah MH, Goldner WS, Benson AB. et al. Neuroendocrine and adrenal tumors, version 2.2021, NCCNclinical practice guidelines in oncology. J Natl Compr Canc Netw 2021; 19: 839-868
  • 21 Rinke A, Müller HH, Schade-Brittinger C. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009; 27: 4656-4663
  • 22 Rinke A, Wittenberg M, Schade-Brittinger C. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): results of long-term survival. Neuroendocrinology 2017; 104: 2632
  • 23 Caplin ME, Pavel M, Ćwikła JB. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 2014; 371: 224-233
  • 24 Caplin ME, Pavel M, Ćwikła JB. et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer 2016; 23: 191-199
  • 25 Kaderli RM, Spanjol M, Kollár A. et al. Therapeutic options for neuroendocrine tumors: a systematic review and network meta-analysis. JAMA Oncol 2019; 5: 480-489
  • 26 Yao JC, Fazio N, Singh S. et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 2016; 387: 968-977
  • 27 Pavel ME, Hainsworth JD, Baudin E. et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 2011; 378: 2005-2012
  • 28 Raymond E, Dahan L, Raoul JL. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 501-513
  • 29 Raymond E, Kulke MH, Qin S. et al. Efficacy and safety of sunitinib in patients with well-differentiated pancreatic nneuroendocrine tumours. Neuroendocrinology 2018; 107: 237-245
  • 30 Yao JC, Guthrie KA, Moran C. et al. Phase III prospective randomized comparison trial of depot octreotide plus interferon alfa-2b versus depot octreotide plus bevacizumab in patients with advanced carcinoid tumors: SWOG S0518. J Clin Oncol 2017; 35: 1695-1703
  • 31 Kölby L, Persson G, Franzén S. et al. Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br J Surg 2003; 90: 687-693
  • 32 Strosberg J, El-Haddad G, Wolin E. et al. Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med 2017; 376: 125-135
  • 33 Mitry E, Baudin E, Ducreux M. et al. Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin. Br J Cancer 1999; 81: 1351-1355
  • 34 Welin S, Sorbye H, Sebjornsen S. et al. Clinical effect of temozolomide-based chemotherapy in poorly differentiated endocrine carcinoma after progression on first-line chemotherapy. Cancer 2011; 117: 4617-4622
  • 35 Al-Toubah T, Pelle E, Valone T. et al. Efficacy and toxicity analysis of capecitabine and temozolomide in neuroendocrine neoplasms. J Natl Compr Canc Netw 2021; 20: 29-36
  • 36 NANETS. 2021 NANETS guidelines compendium https://nanets.net/images/guidelines/2021_NANETS_Guidelines_Compendium.pdf accessed on April 5th, 2022
  • 37 Sharma P, Siddiqui BA, Anandhan S. et al. The next decade of immune checkpoint therapy. Cancer Discov 2021; 11: 838-857
  • 38 Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161: 205-214
  • 39 Overman MJ, Lonardi S, Wong KYM. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 2018; 36: 773-779
  • 40 Hellmann MD, Paz-Ares L, Bernabe Caro R. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med 2019; 381: 2020-2031
  • 41 Larkin J, Chiarion-Sileni V, Gonzalez R. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2019; 381: 1535-1546
  • 42 Schoenfeld JD, Hanna GJ, Jo VY. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: a phase 2 open-label randomized clinical trial. JAMA Oncol 2020; 6: 1563-1570
  • 43 Gettinger SN, Redman MW, Bazhenova L. et al. Nivolumab plus ipilimumab vs nivolumab for previously treated patients with stage IV squamous cell lung cancer: the lung-MAP S1400I phase 3 randomized clinical trial. JAMA Oncol 2021; 7: 1368-1377
  • 44 Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 2016; 44: 989-1004
  • 45 Qin S, Xu L, Yi M. et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer 2019; 18: 155
  • 46 Mehnert JM, Bergsland E, O‘Neil BH. et al. Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: Results from the KEYNOTE-028 study. Cancer 2020; 126: 3021-3030
  • 47 Yao JC, Strosberg J, Fazio N. et al. Spartalizumab in metastatic, well/poorly- differentiated neuroendocrine neoplasms. Endocr Relat Cancer 2021; ERC-20-0382.R1 DOI: 10.1530/ERC-20-0382 Online ahead of print.
  • 48 Patel SP, Othus M, Chae YK. et al. A phase II basket trial of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART SWOG 1609) in patients with nonpancreatic neuroendocrine tumors. Clin Cancer Res 2020; 26: 2290-2296
  • 49 Lu M, Zhang P, Zhang Y. et al. Efficacy, safety, and biomarkers of toripalimab in patients with recurrent or metastatic neuroendocrine neoplasms: a multiple-center phase Ib trial. Clin Cancer Res 2020; 26: 2337-2345
  • 50 Strosberg J, Mizuno N, Doi T. et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: results from the phase II KEYNOTE-158 study. Clin Cancer Res 2020; 26: 2124-2130
  • 51 Vijayvergia N, Dasari A, Deng M. et al. Pembrolizumab monotherapy in patients with previously treated metastatic high-grade neuroendocrine neoplasms: joint analysis of two prospective, non-randomised trials. Br J Cancer 2020; 122: 1309-1314
  • 52 Zhang P, Lu M, Li J. et al. Efficacy and safety of PD-1 blockade with JS001 in patients with advanced neuroendocrine neoplasms: A non-randomized, open-label, phase Ib trial. Ann Oncol 2018; 29 viii468
  • 53 Fottner C, Apostolidis L, Ferrata M. et al. A phase II, open label, multicenter trial of avelumab in patients with advanced, metastatic high-grade neuroendocrine carcinomas NEC G3 (WHO 2010) progressive after first-line chemotherapy (AVENEC). J Clin Oncol 2019; 37: 4103-4103
  • 54 Mulvey C, Raj NP, Chan JA. et al. Phase II study of pembrolizumab-based therapy in previously treated extrapulmonary poorly differentiated neuroendocrine carcinomas: results of part A (pembrolizumab alone). J Clin Oncol 2019; 37: 363-363
  • 55 Frumovitz M, Westin SN, Salvo G. et al. Phase II study of pembrolizumab efficacy and safety in women with recurrent small cell neuroendocrine carcinoma of the lower genital tract. Gynecol Oncol 2020; 158: 570-575
  • 56 Rodriguez-Freixinos V, Chan D, Doherty M. et al. Avelumab in unresectable/metastatic, pprogressive, poorly differentiated, grade 3 neuroendocrine carcinomas (NECs). Neuroendocrinology 2020; 217-217
  • 57 Klein O, Kee D, Markman B. et al. Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers. Clin Cancer Res 2020; 26: 4454-4459
  • 58 Capdevila J, Teule A, López C. et al. 1157O A multi-cohort phase II study of durvalumab plus tremelimumab for the treatment of patients (pts) with advanced neuroendocrine neoplasms (NENs) of gastroenteropancreatic or lung origin: The DUNE trial (GETNE 1601. Ann Oncol 2020; 31: S770-S771
  • 59 Chan JA, Raj NP, Aggarwal RR. et al. Phase II study of pembrolizumab-based therapy in previously treated extrapulmonary poorly differentiated neuroendocrine carcinomas: Results of Part B (pembrolizumab+chemotherapy). J Clin Oncol 2021; 39: 4148-4148
  • 60 Shirasawa M, Yoshida T, Takayanagi D. et al. Activity and immune correlates of programmed death-1 blockade therapy in patients with advanced large cell neuroendocrine carcinoma. Clin Lung Cancer 2021; 22: 282-291 e286
  • 61 Sherman S, Rotem O, Shochat T. et al. Efficacy of immune check-point inhibitors (ICPi) in large cell neuroendocrine tumors of lung (LCNEC). Lung Cancer 2020; 143: 40-46
  • 62 Gile JJ, Liu AJ, McGarrah PW. et al. Efficacy of checkpoint inhibitors in neuroendocrine neoplasms: Mayo clinic experience. Pancreas 2021; 50: 500-505
  • 63 Al-Toubah T, Pelle E, Strosberg J. What is the role of checkpoint inhibitors in neuroendocrine neoplasms?. Oncotarget 2020; 11: 3751-3752
  • 64 McGrail DJ, Pilié PG, Rashid NU. et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol 2021; 32: 661-672
  • 65 Özdirik B, Jann H, Bischoff P. et al. PD-L1 - inhibitors in neuroendocrine neoplasia: Results from a real-life study. Medicine (Baltimore) 2021; 100: e23835
  • 66 Halperin DM, Liu S, Dasari A. et al. Assessment of clinical response following atezolizumab and bevacizumab treatment in patients with neuroendocrine tumors: a nonrandomized clinical trial. JAMA Oncol 2022; 8: 904-909
  • 67 Bongiovanni A, Maiorano BA, Azzali I. et al. Activity and safety of immune checkpoint inhibitors in neuroendocrine neoplasms: a systematic review and meta-analysis. Pharmaceuticals (Basel) 2021; 14: 476
  • 68 Park EJ, Park HJ, Kim KW. et al. Efficacy of immune checkpoint inhibitors against advanced or metastatic neuroendocrine neoplasms: a systematic review and meta-analysis. Cancers (Basel) 2022; 14: 794
  • 69 Samstein RM, Lee CH, Shoushtari AN. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019; 51: 202-206
  • 70 Wells SA, Robinson BG, Gagel RF. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012; 30: 134-141
  • 71 Elisei R, Schlumberger MJ, Müller SP. et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013; 31: 3639-3646
  • 72 Wirth LJ, Sherman E, Robinson B. et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N Engl J Med 2020; 383: 825-835
  • 73 Subbiah V, Hu MI, Wirth LJ. et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol 2021; 9: 491-501
  • 74 Satapathy S, Mittal BR, Sood A. et al. Efficacy and safety of concomitant 177Lu-DOTATATE and low-dose capecitabine in advanced medullary thyroid carcinoma: a single-centre experience. Nucl Med Commun 2020; 41: 629-635
  • 75 Parghane RV, Naik C, Talole S. et al. Clinical utility of (177) Lu-DOTATATE PRRT in somatostatin receptor-positive metastatic medullary carcinoma of thyroid patients with assessment of efficacy, survival analysis, prognostic variables, and toxicity. Head Neck 2020; 42: 401-416
  • 76 Iten F, Müller B, Schindler C. et al. Response to [90yttrium-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res 2007; 13: 6696-6702
  • 77 Hayes AR, Crawford A, Al Riyami K. et al. Metastatic medullary thyroid cancer: the Role of 68gallium-DOTA-somatostatin analogue PET/CT and peptide receptor radionuclide therapy. J Clin Endocrinol Metab 2021; 106: e4903-e4916
  • 78 Bodei L, Handkiewicz-Junak D, Grana C. et al. Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm 2004; 19: 65-71
  • 79 Beukhof CM, Brabander T, van Nederveen FH. et al. Peptide receptor radionuclide therapy in patients with medullary thyroid carcinoma: predictors and pitfalls. BMC Cancer 2019; 19: 325
  • 80 Bi Y, Ren X, Bai X. et al. PD-1/PD-L1 expressions in medullary thyroid carcinoma: clinicopathologic and prognostic analysis of Chinese population. Eur J Surg Oncol 2019; 45: 353-358
  • 81 Hińcza-Nowak K, Kowalik A, Walczyk A. et al. Immune profiling of medullary thyroid cancer – an opportunity for immunotherapy. Genes (Basel) 2021; 12: 1534
  • 82 Shi X, Li CW, Tan LC. et al. Immune co-inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT in medullary thyroid cancers: a large cohort study. J Clin Endocrinol Metab 2021; 106: 120-132
  • 83 Di Molfetta S, Dotto A, Fanciulli G. et al. Immune checkpoint inhibitors: new weapons against medullary thyroid cancer?. Front Endocrinol (Lausanne) 2021; 12: 667784
  • 84 Antonelli A, Ferrari SM, Fallahi P. Current and future immunotherapies for thyroid cancer. Expert Rev Anticancer Ther 2018; 18: 149-159
  • 85 Del Rivero J, Donahue RN, Marté JL. et al. A case report of sequential use of a yeast-CEA therapeutic cancer vaccine and anti-PD-L1 inhibitor in metastatic medullary thyroid cancer. Front Endocrinol (Lausanne) 2020; 11: 490
  • 86 Nölting S, Bechmann N, Taieb D. et al. Personalized management of pheochromocytoma and paraganglioma. Endocr Rev 2022; 43: 199-239
  • 87 Jimenez C, Subbiah V, Stephen B. et al. Phase II clinical trial of pembrolizumab in patients with progressive metastatic pheochromocytomas and paragangliomas. Cancers (Basel) 2020; 12: 2307
  • 88 Rodriguez RR, Rizwan S, Alhamad K. et al. The use of immunotherapy treatment in malignant pheochromocytomas/paragangliomas: a case report. J Med Case Rep 2021; 15: 172
  • 89 Wang Z, Guo X, Gao L. et al. The immune profile of pituitary adenomas and a novel immune classification for predicting immunotherapy responsiveness. J Clin Endocrinol Metab 2020; 105: e3207-e3223
  • 90 Nie D, Fang Q, Li B. et al. Research advances on the immune research and prospect of immunotherapy in pituitary adenomas. World J Surg Oncol 2021; 19: 162
  • 91 Dai C, Liang S, Sun B. et al. The progress of immunotherapy in refractory pituitary adenomas and pituitary carcinomas. Front Endocrinol (Lausanne) 2020; 11: 608422
  • 92 Almutairi RD, Muskens IS, Cote DJ. et al. Gross total resection of pituitary adenomas after endoscopic vs. microscopic transsphenoidal surgery: a meta-analysis. Acta Neurochir (Wien) 2018; 160: 1005-1021
  • 93 Ilie MD, Jouanneau E, Raverot G. Aggressive pituitary adenomas and carcinomas. Endocrinol Metab Clin North Am 2020; 49: 505-515
  • 94 Wang PF, Wang TJ, Yang YK. et al. The expression profile of PD-L1 and CD8(+) lymphocyte in pituitary adenomas indicating for immunotherapy. J Neurooncol 2018; 139: 89-95
  • 95 Sato M, Tamura R, Tamura H. et al. Analysis of tumor angiogenesis and immune microenvironment in non-functional pituitary endocrine tumors. J Clin Med 2019; 8: 695
  • 96 Kemeny HR, Elsamadicy AA, Farber SH. et al. Targeting PD-L1 initiates effective antitumor immunity in a murine model of Cushing disease. Clin Cancer Res 2020; 26: 1141-1151
  • 97 Sol B, de Filette JMK, Awada G. et al. Immune checkpoint inhibitor therapy for ACTH-secreting pituitary carcinoma: a new emerging treatment?. Eur J Endocrinol 2021; 184: K1-K5
  • 98 Hazrati SM, Aghazadeh J, Mohtarami F. et al. Immunotherapy of prolactinoma with a T helper 1 activator adjuvant and autoantigens: a case report. Neuroimmunomodulation 2006; 13: 205-208
  • 99 Angeles CV, Sabel MS. Immunotherapy for Merkel cell carcinoma. J Surg Oncol 2021; 123: 775-781
  • 100 Topalian SL, Bhatia S, Amin A. et al. Neoadjuvant nivolumab for patients with resectable Merkel cell carcinoma in the CheckMate 358 trial. J Clin Oncol 2020; 38: 2476-2487
  • 101 Nghiem P, Bhatia S, Lipson EJ. et al. Durable tumor regression and overall survival in patients with advanced Merkel cell carcinoma receiving pembrolizumab as first-line therapy. J Clin Oncol 2019; 37: 693-702
  • 102 Kaufman HL, Russell J, Hamid O. et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 2016; 17: 1374-1385
  • 103 D’Angelo SP, Russell J, Lebbé C. et al. Efficacy and safety of first-line avelumab treatment in patients with stage IV metastatic Merkel cell carcinoma: a preplanned interim analysis of a clinical trial. JAMA Oncol 2018; 4: e180077
  • 104 Halfdanarson TR, Strosberg JR, Tang L. et al. The north American neuroendocrine tumor society consensus guidelines for surveillance and medical management of pancreatic neuroendocrine tumors. Pancreas 2020; 49: 863-881
  • 105 Kubli SP, Berger T, Araujo DV. et al. Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 2021; 20: 899-919
  • 106 McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 2017; 168: 613-628
  • 107 da Silva A, Bowden M, Zhang S. et al. Characterization of the neuroendocrine tumor immune microenvironment. Pancreas 2018; 47: 1123-1129
  • 108 Katz SC, Donkor C, Glasgow K. et al. T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases. HPB (Oxford) 2010; 12: 674-683
  • 109 Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 2021; 11: 5365-5386
  • 110 Maharjan CK, Ear PH, Tran CG. et al. Pancreatic neuroendocrine tumors: molecular mechanisms and therapeutic targets. Cancers (Basel) 2021; 13: 5117
  • 111 Young K, Lawlor RT, Ragulan C. et al. Immune landscape, evolution, hypoxia-mediated viral mimicry pathways and therapeutic potential in molecular subtypes of pancreatic neuroendocrine tumours. Gut 2021; 70: 1904-1913
  • 112 Topper MJ, Vaz M, Marrone KA. et al. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 2020; 17: 75-90
  • 113 Sheybani ND, Price RJ. Perspectives on recent progress in focused ultrasound immunotherapy. Theranostics 2019; 9: 7749-7758
  • 114 Mariathasan S, Turley SJ, Nickles D. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018; 554: 544-548
  • 115 Ribas A, Dummer R, Puzanov I. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017; 170: 1109-1119 e1110
  • 116 Ngwa W, Irabor OC, Schoenfeld JD. et al. Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 2018; 18: 313-322
  • 117 Peng W, Chen JQ, Liu C. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 2016; 6: 202-216
  • 118 June CH, O’Connor RS, Kawalekar OU. et al. CAR T cell immunotherapy for human cancer. Science 2018; 359: 1361-1365
  • 119 Finn RS, Qin S, Ikeda M. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020; 382: 1894-1905
  • 120 Feig C, Jones JO, Kraman M. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2013; 110: 20212-20217
  • 121 Abril-Rodriguez G, Torrejon DY, Liu W. et al. PAK4 inhibition improves PD-1 blockade immunotherapy. Nat Cancer 2020; 1: 46-58
  • 122 Rindi G, Wiedenmann B. Neuroendocrine neoplasia of the gastrointestinal tract revisited: towards precision medicine. Nat Rev Endocrinol 2020; 16: 590-607
  • 123 Gubbi S, Koch CA, Klubo-Gwiezdzinska J. Peptide receptor radionuclide therapy in thyroid cancer. Front Endocrinol (Lausanne) 2022; 13: 896287
  • 124 Boy C, Heusner TA, Poeppel TD. et al. 68Ga-DOTATOC PET/CT and somatostatin receptor (sst1-sst5) expression in normal human tissue: correlation of sst2 mRNA and SUVmax. Eur J Nucl Med Mol Imaging 2011; 38: 1224-1236
  • 125 Dalm VA, van Hagen PM, van Koetsveld PM. et al. Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells. Am J Physiol Endocrinol Metab 2003; 285: E344-E353
  • 126 Ameri P, Ferone D. Diffuse endocrine system, neuroendocrine tumors and immunity: what’s new?. Neuroendocrinology 2012; 95: 267-276
  • 127 Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer 2010; 127: 759-767
  • 128 Cascini GL, Cuccurullo V, Tamburrini O. et al. Peptide imaging with somatostatin analogues: more than cancer probes. Curr Radiopharm 2013; 6: 36-40
  • 129 Pintér E, Helyes Z, Szolcsányi J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther 2006; 112: 440-456
  • 130 Veenstra MJ, van Koetsveld PM, Dogan F. et al. Epidrug-induced upregulation of functional somatostatin type 2 receptors in human pancreatic neuroendocrine tumor cells. Oncotarget 2018; 9: 14791-14802
  • 131 Jin XF, Auernhammer CJ, Ilhan H. et al. Combination of 5-fluorouracil with epigenetic modifiers induces radiosensitization, somatostatin receptor 2 expression, and radioligand binding in neuroendocrine tumor cells in vitro. J Nucl Med 2019; 60: 1240-1246
  • 132 Pivonello R, Munster PN, Terzolo M. et al. Glucocorticoid receptor antagonism upregulates somatostatin receptor subtype 2 expression in ACTH-producing neuroendocrine tumors: new insight based on the selective glucocorticoid receptor modulator relacorilant. Front Endocrinol (Lausanne) 2021; 12: 793262
  • 133 Liu X, Bao X, Hu M. et al. Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer. Nature 2020; 588: 693-698
  • 134 Mager LF, Burkhard R, Pett N. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 2020; 369: 1481-1489
  • 135 Kang NW, Tan KT, Li CF. et al. Complete and durable response to nivolumab in recurrent poorly differentiated pancreatic neuroendocrine carcinoma with high tumor mutational burden. Curr Oncol 2021; 28: 4587-4596
  • 136 Rousseau B, Foote MB, Maron SB. et al. The spectrum of benefit from checkpoint blockade in hypermutated tumors. N Engl J Med 2021; 384: 1168-1170