CC BY-NC-ND 4.0 · Synthesis 2023; 55(06): 927-933
DOI: 10.1055/a-1902-5592
special topic
Synthetic Advancements Enabled by Phosphorus Redox Chemistry

Catalytic Hydrophosphination of Allenes Using an Iron(II) β-Diketiminate Complex

Callum R. Woof
,
Thomas G. Linford-Wood
,
Mary F. Mahon
,
The Engineering and Physical Sciences Research Council (EPSRC) and the EPSRC Centre for Doctoral Training in Catalysis (Ph.D. studentships awarded to C.R.W. and T.G.L.-W.) are thanked for funding.


Abstract

A rare study into the catalytic hydrophosphination of allenes is reported. Employing an Fe(II) β-diketiminate pre-catalyst, the reaction of HPPh2 proceeds with a range of aryl- and alkylallenes. For arylallenes the E-vinyl product forms as the major species, while the 1,1-disubstituted alkene is formed in a larger ratio than the Z-vinyl product (e.g., 6:3:1 as E/1,1/Z). The use of H2PPh results in good yields of the 1,1-disubstituted alkene, where the resultant secondary phosphine product does not undergo further reaction. We postulate a catalytic cycle based on spectroscopic data. Employing an [Fe(salen)]2-µ-oxo pre-catalyst leads to phosphine dehydrocoupling rather than hydrophosphination.

Supporting Information



Publikationsverlauf

Eingereicht: 14. Juni 2022

Angenommen nach Revision: 14. Juli 2022

Accepted Manuscript online:
18. Juli 2022

Artikel online veröffentlicht:
22. August 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Perego LA, Blieck R, Groué A, Monnier F, Taillefer M, Ciofini I, Grimaud L. ACS Catal. 2017; 7: 4253
    • 1b Kinder RE, Zhang Z, Widenhoefer RA. Org. Lett. 2008; 10: 3157
    • 1c Michon C, Medina F, Abadie M.-A, Agbossou-Niedercorn F. Organometallics 2013; 32: 5589
    • 1d Ayinla RO, Schafer LL. Dalton Trans. 2011; 40: 7769
    • 1e Xu K, Wang Y.-H, Khakyzadeh V, Breit B. Chem. Sci. 2016; 7: 3313
    • 2a Kister J, DeBaillie AC, Lira R, Roush WR. J. Am. Chem. Soc. 2009; 131: 14174
    • 2b Nagashima Y, Sasaki K, Suto T, Sato T, Chida N. Chem. Asian J. 2018; 13: 1024
    • 2c Li C, Yang Z, Wang L, Guo Y, Huang Z, Ma S. Angew. Chem. Int. Ed. 2020; 59: 6278
    • 2d Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2013; 19: 7125
    • 2e Yasunori Y, Ryou F, Akihiko Y, Norio M. Chem. Lett. 1999; 28: 1069
    • 3a Tafazolian H, Schmidt JA. R. Chem. Commun. 2015; 51: 5943
    • 3b Kidonakis M, Stratakis M. Org. Lett. 2015; 17: 4538
    • 3c Wang C, Teo WJ, Ge S. Nat. Commun. 2017; 8: 2258
    • 3d Cai Y, Zhao W, Wang S, Liang Y, Yao Z.-J. Org. Lett. 2019; 21: 9836
    • 3e Jiang Y.-N, Zeng J.-H, Yang Y, Liu Z.-K, Chen J.-J, Li D.-C, Chen L, Zhan Z.-P. Chem. Commun. 2020; 56: 1597
    • 4a Zagidullin AA, Sakhapov IF, Miluykov VA, Yakhvarov DG. Molecules 2021; 26: 5283
    • 4b Seah JW. K, Teo RH. X, Leung PH. Dalton Trans. 2021; 50: 16909
    • 4c Huke CD, Kays DL. Hydrofunctionalization Reactions of Heterocumulenes: Formation of C–X (X = B, N, O, P, S and Si) Bonds by Homogeneous Metal Catalysts. In Advances in Organometallic Chemistry, Vol. 75. Perez PJ. Academic Press; Cambridge: 2021: 1-54
    • 4d Beletskaya IP, Najera C, Yus M. Russ. Chem. Rev. 2021; 90: 70
    • 4e Banerjee I, Panda TK. Org. Biomol. Chem. 2021; 19: 6571
    • 4f Li YY, Cheng YH, Shan CH, Zhang J, Xu DD, Bai RP, Au LB, Lan Y. Chin. J. Org. Chem. 2018; 38: 1885
    • 4g Uhl W, Keweloh L, Hepp A, Stegemann F, Layh M, Bergander K. Z. Anorg. Allg. Chem. 2017; 643: 1978
    • 4h Gusarova NK, Chernysheva NA, Trofimov BA. Synthesis 2017; 49: 4783
    • 4i Bezzenine-Lafollee S, Gil R, Prim D, Hannedouche J. Molecules 2017; 22: 1901
    • 5a Chakravarty M, Bhuvan Kumar NN, Sajna KV, Kumara Swamy KC. Eur. J. Org. Chem. 2008; 4500
    • 5b Kalek M, Stawinski J. Adv. Synth. Catal. 2011; 353: 1741
    • 5c Chakravarty M, Kumara Swamy KC. J. Org. Chem. 2006; 71: 9128
  • 6 Shen R, Yang J, Zhang M, Han L.-B. Adv. Synth. Catal. 2017; 359: 3626
  • 7 Fourgeaud P, Daydé B, Volle J.-N, Vors J.-P, Van der Lee A, Pirat J.-L, Virieux D. Org. Lett. 2011; 13: 5076
  • 8 Yang Z, Wang J. Angew. Chem. Int. Ed. 2021; 60: 27288
  • 9 Mitchell TN, Heesche K. J. Organomet. Chem. 1991; 409: 163
  • 10 Takaki K, Koshoji G, Komeyama K, Takeda M, Shishido T, Kitani A, Takehira K. J. Org. Chem. 2003; 68: 6554
  • 11 Busacca CA, Farber E, DeYoung J, Campbell S, Gonnella NC, Grinberg N, Haddad N, Lee H, Ma S, Reeves D, Shen S, Senanayake CH. Org. Lett. 2009; 11: 5594
  • 12 Huang Y, Pullarkat SA, Yuan M, Ding Y, Li Y, Leung P.-H. Organometallics 2010; 29: 536
  • 13 Zhao C.-Q, Han L.-B, Tanaka M. Organometallics 2000; 19: 4196
  • 14 Bravo-Altamirano K, Abrunhosa-Thomas I, Montchamp J.-L. J. Org. Chem. 2008; 73: 2292
  • 15 Hu S, Sun W, Chen J, Li S, Zhao R, Xu P, Gao Y, Zhao Y. Chem. Commun. 2021; 57: 339
  • 16 Zhang C, Lu X. J. Org. Chem. 1995; 60: 2906
  • 17 An F, Jangra H, Wei Y, Shi M, Zipse H, Ofial AR. Chem. Commun. 2022; 58: 3358
    • 18a Gallagher KJ, Webster RL. Chem. Commun. 2014; 50: 12109
    • 18b Espinal-Viguri M, King AK, Lowe JP, Mahon MF, Webster RL. ACS Catal. 2016; 6: 7892
    • 18c Gallagher KJ, Espinal-Viguri M, Mahon MF, Webster RL. Adv. Synth. Catal. 2016; 358: 2460
  • 19 Webster R. Inorganics 2018; 6: 120
  • 20 Coles NT, Mahon MF, Webster RL. Chem. Commun. 2018; 54: 10443
  • 21 Blackaby WJ. M, Neale SE, Isaac CJ, Sabater S, Macgregor SA, Whittlesey MK. ChemCatChem 2019; 11: 1893
  • 22 Bookham JL, McFarlane W, Thornton-Pett M, Jones S. J. Chem. Soc., Dalton Trans. 1990; 3621
  • 23 Bookham JL, Smithies DM, Wright A, Thornton-Pett M, McFarlane W. J. Chem. Soc., Dalton Trans. 1998; 811
  • 24 Al-Shboul TM. A, Pálfi VK, Yu L, Kretschmer R, Wimmer K, Fischer R, Görls H, Reiher M, Westerhausen M. J. Organomet. Chem. 2011; 696: 216
    • 25a Hayashi M, Matsuura Y, Watanabe Y. J. Org. Chem. 2006; 71: 9248
    • 25b Hu H, Cui C. Organometallics 2012; 31: 1208
    • 25c Moglie Y, González-Soria MJ, Martín-García I, Radivoy G, Alonso F. Green Chem. 2016; 18: 4896
    • 25d Pollard VA, Young A, McLellan R, Kennedy AR, Tuttle T, Mulvey RE. Angew. Chem. Int. Ed. 2019; 58: 12291
    • 25e Barrett AN, Sanderson HJ, Mahon MF, Webster RL. Chem. Commun. 2020; 56: 13623
    • 25f Basiouny MM. I, Dollard DA, Schmidt JA. R. ACS Catal. 2019; 9: 7143
    • 25g Novas BT, Bange CA, Waterman R. Eur. J. Inorg. Chem 2019; 1640
  • 26 King AK, Buchard A, Mahon MF, Webster RL. Chem. Eur. J. 2015; 21: 15960
  • 27 Kaniewska K, Dragulescu-Andrasi A, Ponikiewski Ł, Pikies J, Stoian SA, Grubba R. Eur. J. Inorg Chem. 2018; 4298