CC BY-NC-ND 4.0 · Organic Materials 2022; 4(03): 61-72
DOI: 10.1055/a-1896-6890
Supramolecular Chemistry
Original Article

Selective Recognition of Ammonium over Potassium Ion with Acyclic Receptor Molecules Bearing 3,4,5-Trialkylpyrazolyl Groups

Felix Fuhrmann
a   Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany
,
Wilhelm Seichter
a   Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany
,
a   Institut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany
› Author Affiliations


Abstract

Among the 1,3,5-trisubstituted 2,4,6-triethylbenzenes bearing pyrazolyl groups, the compounds with 3,5-dimethylpyrazolyl moieties were found to be effective receptors for ammonium ions (NH4 +). The current study investigated the extent to which the incorporation of an additional alkyl group in the 4-position of the pyrazole ring affects the binding properties of the new compounds. 1H NMR spectroscopic titrations and investigations using isothermal titration calorimetry revealed that this small structural variation leads to a significant increase in the binding strength towards NH4 + and also improves the binding preference for NH4 + over K+. In addition to the studies in solution, crystalline complexes of the new triethyl- and trimethylbenzene derivatives, bearing 3,4,5-trialkylpyrazolyl groups, with NH4 +PF6 were obtained and analyzed in detail. It is noteworthy that two of the crystal structures discussed in this work are characterized by the presence of two types of ammonium complexes. Studies focusing on the development of new artificial ammonium receptors are motivated, among other things, by the need for more selective ammonium sensors than those based on the natural ionophore nonactin.



Publication History

Received: 08 June 2022

Accepted after revision: 06 July 2022

Accepted Manuscript online:
11 July 2022

Article published online:
11 August 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ingildsen P, Olsson G. Water Sci. Technol. 2002; 46: 139
    • 1b Kaelin D, Rieger L, Eugster J, Rottermann K, Bänninger C, Siegrist H. Water Sci. Technol. 2008; 58: 629
    • 1c König A, Bachmann TT, Metzger JW, Schmid RD. Appl. Microbiol. Biotechnol. 1999; 51: 112
    • 1d Athavale R, Kokorite I, Dinkel C, Bakker E, Wehrli B, Crespo GA, Brand A. Anal. Chem. 2015; 87: 11990
    • 1e Reichert J, Sellien W, Ache HJ. Freseniusʼ J. Anal. Chem. 1991; 339: 467
    • 1f Winkler S, Rieger L, Saracevic E, Pressl A, Gruber G. Water Sci. Technol. 2004; 50: 105
    • 2a Zhang W, Zhang J. PCT Int. Appl. WO2016/040048 A1, 2016
    • 2b Radomska A, Bodenszac E, Głab S, Koncki R. Talanta 2004; 64: 603
    • 2c Magalhães JMCS, Machado AASC. Analyst 2002; 127: 1069
    • 2d Wolfbeis OS, Li H. Biosens. Bioelectron. 1993; 8: 161
    • 2e Kovács B, Nagy G, Dombi R, Tóth K. Bionsens. Bioelectron. 2003; 18: 111
    • 2f Kawabata Y, Sugamoto H, Imasaka T. Anal. Chim. Acta 1993; 283: 689
    • 3a Sidey V. Acta Cryst. 2016; B72: 626
    • 3b Shannon RD. Acta Cryst. 1976; A32: 751
    • 4a Siswanta D, Hisamoto H, Tohma H, Yamamoto N, Suzuki K. Chem. Lett. 1994; 23: 945
    • 4b Bühlmann P, Pretsch E, Bakker E. Chem. Rev. 1998; 98: 1593
    • 5a Suzuki K, Siswanta D, Otsuka T, Amano T, Ikeda T, Hisamoto H, Yoshihara R, Ohba S. Anal. Chem. 2000; 72: 2200
    • 5b Sasaki S, Amano T, Monma G, Otsuka T, Iwasawa N, Citterio D, Hisamoto H, Suzuki K. Anal. Chem. 2002; 74: 4845
    • 5c Graf E, Kintzinger JP, Lehn JM, LeMoigne J. J. Am. Chem. Soc. 1982; 104: 1672
    • 5d Kim H-S, Park HJ, Oh HJ, Koh YK, Choi J-H, Lee D-H, Cha GS, Nam H. Anal. Chem. 2000; 72: 4683
    • 5e Rahman MA, Kwon N-H, Won M-S, Hyun M-H, Shim Y-B. Anal. Chem. 2004; 76: 3660
    • 5f Jon SY, Kim J, Kim M, Park SH, Jeon WS, Heo J, Kim K. Angew. Chem. Int. Ed. 2001; 40: 2116
    • 5g Campayo L, Pardo M, Cotillas A, Jaúregui O, Yunta MJ, Cano C, Gomez-Contreras F, Navarro P, Sanz AM. Tetrahedron 2004; 60: 979
  • 6 Pazik A, Skwierawska A. Sens. Actuators, B 2014; 196: 370
    • 7a Chin J, Walsdorff C, Stranix B, Oh J, Chung HJ, Park S-M, Kim K. Angew. Chem. Int. Ed. 1999; 38: 2756
    • 7b Chin J, Oh J, Jon SY, Park SH, Walsdorff C, Stranix B, Ghoussoub A, Lee SJ, Chung HJ, Park S-M, Kim K. J. Am. Chem. Soc. 2002; 124: 5374
    • 7c Koch N, Seichter W, Mazik M. CrystEngComm 2017; 19: 3817
    • 7d Schulze MM, Koch N, Seichter W, Mazik M. Eur. J. Org. Chem. 2018; 2018: 4317
    • 7e Jonah TM, Mathivathanan L, Morozov AN, Mebel AM, Raptis RG, Kavallieratos K. New J. Chem. 2017; 41: 14835
    • 7f Rueda-Zubiaurre A, Herrero-García N, del Rosario Torres M, Fernández I, Osío Barcina J. Chem. Eur. J. 2012; 18: 16884
    • 7g Ahn KH, Kim S-G, Jung J, Kim K-H, Kim J, Chin J, Kim K. Chem. Lett. 2000; 29: 170
    • 7h Kim H-S, Kim D-H, Kim KS, Choi J-H, Choi H-J, Kim S-H, Shim JH, Cha GS, Nam H. Talanta 2007; 71: 1986
    • 7i Kim H-S, Kim D-H, Kim KS, Choi H-J, Shim JH, Jeong IS, Cha GS, Nam H. J. Inclusion Phenom. Macrocyclic Chem. 2003; 46: 201
    • 7j Oh KS, Lee C-W, Choi HS, Lee SJ, Kim KS. Org. Lett. 2000; 2: 2679
    • 8a Koch N, Seichter W, Mazik M. Tetrahedron 2015; 71: 8965
    • 8b Arunachalam M, Ahamed BN, Ghosh P. Org. Lett. 2010; 12: 2742
  • 9 Fuhrmann F, Meier E, Seichter W, Mazik M. Acta Cryst. 2022; E78 DOI: 10.1107/S2056989022006867.
  • 10 Hynes MJ. J. Chem. Soc., Dalton Trans. 1993; 311
  • 11 Hübler C. Chem. – Methods 2022; e202200006 preprint DOI: 10.1002/cmtd.202200006.
    • 12a Yoe JH, Jones AL. Ind. Eng. Chem. Anal. Ed. 1944; 16: 111
    • 12b Meyer Jr AS, Ayres GH. J. Am. Chem. Soc. 1957; 79: 49
    • 12c Chriswell CD, Schilt AA. Anal. Chem. 1975; 47: 1623
    • 13a Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
    • 13b Taft RW. J. Am. Chem. Soc. 1952; 74: 2729
    • 13c Taft RW. J. Am. Chem. Soc. 1952; 74: 3120
  • 14 Schulze M, Schwarzer A, Mazik M. CrystEngComm 2017; 19: 4003
  • 16 Desiraju GR, Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press; Oxford: 1999
  • 17 Spek AL. Acta Cryst. 2015; C71: 9
  • 18 Spek AL. Acta Cryst. 2009; D65: 148
  • 19 Grepioni F, Cojazzi G, Draper SM, Scully N, Braga D. Organometallics 1998; 17: 296
    • 21a Köhler L, Seichter W, Mazik M. Eur. J. Org. Chem. 2020; 2020: 7023
    • 21b Köhler L, Hübler C, Seichter W, Mazik M. RSC Adv. 2021; 11: 22221
  • 22 Koch N, Mazik M. Synthesis 2013; 45: 3341
  • 23 Andree SNL, Sinha AS, Aakeröy CB. Molecules 2018; 23: 163
  • 24 Hartshorn CM, Steel PJ. Aust. J. Chem. 1995; 48: 1587
  • 25 Morin TJ, Wanniarachchi S, Gwengo C, Makura V, Tatlock HM, Lindeman SV, Bennett B, Long GJ, Grandjean F, Gardinier JR. Dalton Trans. 2011; 40: 8024
  • 26 Hillier AC, Zhang XW, Maunder GH, Liu SY, Eberspacher TA, Metz MV, McDonald R, Domingos A, Marques N, Day VW, Sella A, Takats J. Inorg. Chem. 2001; 40: 5106
  • 27 Ardizzoia GA, Brenna S, Durini S, Therrien B, Trentin I. Dalton Trans. 2013; 42: 12265
  • 28 Stoe & Cie. X-AREA and X-RED. Darmstadt, Germany: STOE & Cie GmbH; 2009
  • 29 Sheldrick GM. Acta Cryst. 2015; A71: 3
  • 30 Sheldrick GM. Acta Cryst. 2015; C71: 3