CC BY-NC-ND 4.0 · Organic Materials 2022; 4(03): 43-52
DOI: 10.1055/a-1883-6076
Supramolecular Chemistry
Original Article

Bifurcated Chalcogen Bonds Based on One σ-Hole

Saber Mehrparvar
a   Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, 45117 Essen, Germany
,
Christoph Wölper
a   Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, 45117 Essen, Germany
,
b   Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
a   Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstr. 7, 45117 Essen, Germany
› Institutsangaben


Abstract

Chalcogen bonds are noncovalent interactions and are increasingly coming into focus for the design of complex structures in research areas such as crystal engineering, molecular recognition and catalysis. Conceptionally, chalcogen bonds can be considered as interaction between one σ-hole and one Lewis base center. Herein, we analyze the interaction between bidentate chelating ligands having two nucleophilic centers with one single σ-hole of a chalcogenazole (two-lone-pair/one-σ-hole interactions). Referring to this, we show by quantum chemical calculations and X-ray studies that three bond types are possible: in the first case, a chalcogen bond is formed between the σ-hole and only one of the Lewis base centers. In the second case, a strong bond is formed by one nucleophilic center; the second center provides only a small amount of additional stabilization. In the third case, two equivalent bonds to the σ-hole are formed by both Lewis base centers. According to the calculations, the bifurcated bonds are stronger than simple chalcogen bonds and lead to a more rigid molecular arrangement in the complex.



Publikationsverlauf

Eingereicht: 25. Mai 2022

Angenommen nach Revision: 21. Juni 2022

Accepted Manuscript online:
23. Juni 2022

Artikel online veröffentlicht:
14. Juli 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kolb S, Oliver GA, Werz DB. Angew. Chem. Int. Ed. 2020; 59: 22306
  • 2 Aakeroy CB, Bryce DL, Desiraju GR, Frontera A, Legon AC, Nicotra F, Rissanen K, Scheiner S, Terraneo G, Metrangolo P, Resnati G. Pure Appl. Chem. 2019; 91: 1889
  • 3 Biot N, Bonifazi D. Chem. Eur. J. 2020; 26: 2904
  • 4 Kumar V, Xu Y, Bryce DL. Chem. Eur. J. 2020; 26: 3275
  • 5 Ho PC, Wang JZ, Meloni F, Vargas-Baca I. Coord. Chem. Rev. 2020; 422: 213464
  • 6 Scilabra P, Terraneo G, Resnati G. Acc. Chem. Res. 2019; 52: 1313
  • 7 Gleiter R, Haberhauer G, Werz DB, Rominger F, Bleiholder C. Chem. Rev. 2018; 118: 2010
  • 8 Cozzolino AF, Elder PJW, Vargas-Baca I. Coord. Chem. Rev. 2011; 255: 1426
  • 9 Werz DB, Gleiter R, Rominger F. Organometallics 2003; 22: 843
  • 10 Mehrparvar S, Wölper C, Gleiter R, Haberhauer G. Angew. Chem. Int. Ed. 2020; 59: 17154
  • 11 Eckstein BJ, Brown LC, Noll BC, Moghadasnia MP, Balaich GJ, McGuirk CM. J. Am. Chem. Soc. 2021; 143: 20207
  • 12 Navarro-García E, Galmés B, Velasco MD, Frontera A, Caballero A. Chem. Eur. J. 2020; 26: 4706
  • 13 Borissov A, Marques I, Lim JYC, Félix V, Smith MD, Beer PD. J. Am. Chem. Soc. 2019; 141: 4119
  • 14 Riwar L.-J, Trapp N, Root K, Zenobi R, Diederich F. Angew. Chem. Int. Ed. 2018; 57: 17259
  • 15 Chen L, Xiang J, Zhao Y, Yan Q. J. Am. Chem. Soc. 2018; 140: 7079
  • 16 Lim JYC, Marques I, Thompson AL, Christensen KE, Félix V, Beer PD. J. Am. Chem. Soc. 2017; 139: 3122
  • 17 Ho PC, Szydlowski P, Sinclair J, Elder PJW, Kübel J, Gendy C, Lee LM, Jenkins H, Britten JF, Morim DR, Vargas-Baca I. Nat. Commun. 2016; 7: 11299
  • 18 Benz S, Macchione M, Verolet Q, Mareda J, Sakai N, Matile S. J. Am. Chem. Soc. 2016; 138: 9093
  • 19 Macchione M, Goujon A, Strakova K, Humeniuk HV, Licari G, Tajkhorshid E, Sakai N, Matile S. Angew. Chem. Int. Ed. 2019; 58: 15752
  • 20 Mehrparvar S, Scheller ZN, Wölper C, Haberhauer G. J. Am. Chem. Soc. 2021; 143: 19856
  • 21 Young CM, Elmi A, Pascoe DJ, Morris RK, McLaughlin C, Woods AM, Frost AB, de la Houpliere A, Ling KB, Smith TK, Slawin AMZ, Willoughby PH, Cockroft SL, Smith AD. Angew. Chem. Int. Ed. 2020; 59: 3705
  • 22 Wang W, Zhu H, Feng L, Yu Q, Hao J, Zhu R, Wang Y. J. Am. Chem. Soc. 2020; 142: 3117
  • 23 Wonner P, Steinke T, Vogel L, Huber SM. Chem. Eur. J. 2020; 26: 1258
  • 24 Strakova K, Assies L, Goujon A, Piazzolla F, Humeniuk HV, Matile S. Chem. Rev. 2019; 119: 10977
  • 25 Wang W, Zhu H, Liu S, Zhao Z, Zhang L, Hao J, Wang Y. J. Am. Chem. Soc. 2019; 141: 9175
  • 26 Wonner P, Dreger A, Vogel L, Engelage E, Huber SM. Angew. Chem. Int. Ed. 2019; 58: 16923
  • 27 Benz S, Poblador-Bahamonde AI, Low-Ders N, Matile S. Angew. Chem. Int. Ed. 2018; 57: 5408
  • 28 Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Pombeiro AJL. Dalton Trans. 2017; 46: 10121
  • 29 Politzer P, Murray JS, Clark T, Resnati G. Phys. Chem. Chem. Phys. 2017; 19: 32166
  • 30 Clark T. WIREs Comput. Mol. Sci. 2013; 3: 13
  • 31 Haberhauer G, Gleiter R. Angew. Chem. Int. Ed. 2020; 59: 21236
  • 32 Bleiholder C, Gleiter R, Werz DB, Köppel H. Inorg. Chem. 2007; 46: 2249
  • 33 Bleiholder C, Werz DB, Köppel H, Gleiter R. J. Am. Chem. Soc. 2006; 128: 2666
  • 34 Ho PC, Rafique J, Lee J, Lee LM, Jenkins HA, Britten JF, Braga AL, Vargas-Baca I. Dalton Trans. 2017; 46: 6570
  • 35 Garrett GE, Gibson GL, Straus RN, Seferos DS, Taylor MS. J. Am. Chem. Soc. 2015; 137: 4126
  • 36 Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH. J. Am. Chem. Soc. 2005; 127: 3184
  • 37 Smith WE, Franklin DV, Goutierrez KL, Fronczek FR, Mautner FA, Junk T. Am. J. Heterocycl. Chem. 2019; 5: 49
  • 38 Kremer A, Fermi A, Biot N, Wouters J, Bonifazi D. Chem. Eur. J. 2016; 22: 5665
  • 39 Biot N, Bonifazi DCoord. Chem. Rev. 2020; 413: 213243
  • 40 Pascoe DJ, Ling KB, Cockroft SL. J. Am. Chem. Soc. 2017; 139: 15160
  • 41 Mahmudov KT, Aliyeva VA, Guedes da Silva MFC, Pombeiro AJL, Huber S. In Halogen Bonding in Solution. Huber S. Weinheim: Wiley-VCH; 2021
  • 42 Rozas I, Alkorta I, Elguero J. J. Phys. Chem. A 1998; 102: 9925
  • 43 Ji B, Wang W, Deng D, Zhang Y. Cryst. Growth Des. 2011; 11: 3622
  • 44 Scheiner S. Molecules 2021; 26: 350
  • 45 Grimme S. J. Chem. Phys. 2006; 124: 034108
  • 46 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
  • 47 Purvis III GD, Bartlett RJ. J. Chem. Phys. 1982; 76: 1910
  • 48 Boys SF, Bernardi F. Mol. Phys. 1970; 19: 553
  • 49 Fabig S, Haberhauer G, Gleiter R. J. Am. Chem. Soc. 2015; 137: 1833
  • 50 Haberhauer G, Gleiter R. J. Am. Chem. Soc. 2013; 135: 8022
  • 51 Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett. 1989; 157: 200
  • 52 Becke AD. Phys. Rev. A 1988; 38: 3098
  • 53 Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter 1988; 37: 785
  • 54 Legault CY. CYLview20. Université de Sherbrooke; 2020
  • 55 Bickelhaupt FM, Baerends EJ. Rev. Comput. Chem. 2000; 15: 1
  • 56 McMullen NC, Fronczek FR, Junk T. J. Heterocycl. Chem. 2013; 50: 120
  • 57 Kremer A, Aurisicchio C, De Leo F, Ventura B, Wouters J, Armaroli N, Barbieri A, Bonifazi D. Chem. Eur. J. 2015; 21: 15377