RSS-Feed abonnieren
DOI: 10.1055/a-1840-0682
The association between ureteral wall thickness and need for additional procedures after primary ureteroscopy in patients with ureteral stones above the iliac crest
Die Assoziation zwischen Harnleiterwandstärke und Notwendigkeit zusätzlicher Eingriffe nach primärer Ureteroskopie bei Patienten mit Harnleitersteinen oberhalb des Beckenkamms
Abstract
Purpose To examine the parameters affecting the need for additional procedures in the primary ureteroscopy treatment in patients with ureteral stones above the iliac crest level.
Methods Seventy-one patients were included in the study who were ≥ 18 years old and had undergone ureteroscopy (URS) for ureteral stones above the iliac crest level between 2018–2020 and had a non-contrast-enhanced abdominal computed tomography before the procedures were included in the study. Patients and stone characteristics were prospectively collected. The results were evaluated six weeks after URS. The absence of any residual fragment was thought to indicate stone-free status. The patients with failure were referred for the additional procedures.
Results The median patient age was 51 years [interquartile range (IQR): 18–66]. The median transverse stone diameter was 9.5 mm (IQR: 7.1–11.4), and the median ureteral wall thickness (UWT) was 5.8 mm (IQR: 4.3–6.5). In the univariate analysis, UWT (p < 0.001), presence of multiple stones (p = 0.008), and stone length (p = 0.022) affected stone-free status. The multivariate analysis revealed UWT as the only independent factor affecting the need for additional procedures after URS (p = 0.028). In the receiver operating characteristic curve analysis, the best threshold value for UWT according to the outcomes was identified as 5.8 mm.
Conclusion Ureteral wall thickness was the only independent parameter determining the need for additional procedures and affecting the treatment outcomes after the URS procedure.
Zusammenfassung
Zweck Untersuchung der Parameter, die die Notwendigkeit zusätzlicher Eingriffe der primären Ureteroskopie-Behandlung bei Patienten mit Harnleitersteinen oberhalb des Beckenkamms beeinflussen.
Methoden Einundsiebzig Patienten, die ≥ 18 Jahre alt waren und sich zwischen 2018 und 2020 einer Ureteroskopie (URS) wegen Harnleitersteinen oberhalb des Beckenkamms unterzogen und eine nicht kontrastverstärkte abdominale Computertomographie hatten, bevor die Verfahren in die Studie aufgenommen wurden. Patienten und Steinmerkmale wurden prospektiv erhoben. Die Ergebnisse wurden sechs Wochen nach URS ausgewertet. Es wurde angenommen, dass das Fehlen jeglicher Restfragmente auf einen steinfreien Status hinweist. Die Patienten mit Misserfolg wurden auf die zusätzlichen Verfahren verwiesen.
Ergebnisse Das mediane Patientenalter betrug 51 Jahre [Interquartilbereich (IQR): 18–66]. Der mediane transversale Steindurchmesser betrug 9,5 mm (IQR: 7,1–11,4) und die mediane Ureterwanddicke (UWT) betrug 5,8 mm (IQR: 4,3–6,5). In der univariaten Analyse beeinflussten UWT (p < 0,001), das Vorhandensein mehrerer Steine (p = 0,008) und die Steinlänge (p=0,022) den steinfreien Status. Die multivariate Analyse ergab, dass UWT der einzige unabhängige Faktor ist, der die Notwendigkeit zusätzlicher Verfahren nach URS beeinflusst (p = 0,028). In der Receiver-Betriebskennlinienanalyse wurde der gemäß den Ergebnissen beste Schwellwert für UWT mit 5,8 mm ermittelt.
Schlussfolgerung Die Harnleiterwanddicke war der einzige unabhängige Parameter, der die Notwendigkeit zusätzlicher Verfahren bestimmte und die Behandlungsergebnisse nach dem URS-Verfahren beeinflusste.
Schlüsselwörter
Harnleiterstein - Ureteroskopie - Minimalinvasive Chirurgie - Nicht kontrastverstärkte Computertomographie - BehandlungsergebnisKeywords
Ureteral stone - Ureteroscopy - Minimally invasive surgery - Treatment outcome - Non-contrast enhanced computed tomographyPublikationsverlauf
Eingereicht: 28. April 2022
Angenommen nach Revision: 21. Juli 2022
Artikel online veröffentlicht:
06. Dezember 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Turk C, Neisius A, Petrik A. et al. EAU Guidelines on Urolithiasis. European Association of Urology. Edn. presented at the EAU Annual Congress Amsterdam. EAU Guidelines Office, Arnhem, The Netherlands. Zugriff am 01. Januar 2000 unter: https://uroweb.org/guideline/urolithiasis/
- 2 Yamashita S, Iwahashi Y, Deguchi R. et al. Three-dimensional mean stone density on non-contrast computed tomography can predict ureteroscopic lithotripsy outcome in ureteral stone cases. Urolithiasis 2020; 48: 547-552
- 3 Yu W, Cheng F, Zhang X. et al. Retrograde ureteroscopic treatment for upper ureteral stones: a 5-year retrospective study. J Endourol 2010; 24: 1753-1757
- 4 Sarica K, Kafkasli A, Yazici O. et al. Ureteral wall thickness at the impacted ureteral stone site: a critical predictor for success rates after SWL. Urolithiasis 2015; 43: 8388
- 5 Roberts WW, Cadeddu JA, Micali S. et al. Ureteral stricture formation after removal of impacted calculi. J Urol 1998; 159: 723-726
- 6 Mugiya S, Ito T, Maruyama S. et al. Endoscopic features of impacted ureteral stones. J Urol 2004; 171: 89-91
- 7 Deliveliotis C, Chrisofos M, Albanis S. et al. Management and follow-up of impacted ureteral stones. Urol Int 2003; 70: 269-272
- 8 Seitz C, Memarsadeghi M, Fajkovic H. et al. Secondary signs of non-enhanced CT prior to laser ureterolithotripsy: is treatment outcome predictable?. J Endourol 2008; 22: 415-418
- 9 Kırlı EA, Bülbül E, Kaygısız O. et al. Ureteral Wall Thickness at the Stone Site: A Critical Predictor of Success and Complications in Children Undergoing Semi-Rigid Ureteroscopy. Journal of Pediatric Urology 2021; 17: 796-e1
- 10 Seitz C, Tanovic E, Kikic Z. et al. Impact of stone size, location, composition, impaction, and hydronephrosis on the efficacy of holmium:YAG-laser ureterolithotripsy. Eur Urol 2007; 52: 1751-1757
- 11 Assimos D, Krambeck A, Miller NL. et al. Surgical Management of Stones: American Urological Association/Endourological Society Guideline, PART II. J Urol 2016; 196: 1161-1169
- 12 Tiselius HG, Alken P, Buck C. et al. Guideline on Urolithiasis. European Association Urology 2001; 40: 362-371
- 13 Yoshida T. Ureteral Wall Thickness as a Preoperative Indicator of Impacted Stones in Patients With Ureteral Stones Undergoing Ureteroscopic Lithotripsy. Urology 2017; 106: 45-49
- 14 Brito AH, Mitre Al, Srougi M. Ureteroscopic pneumatic lithotripsy of impacted ureteral calculi. Int Braz J Urol 2006; 32: 295-9
- 15 Sarica K, Eryildirim B, Akdere H. et al. Could ureteral wall thickness have an impact on the operative and post-operative parameters in ureteroscopic management of proximal ureteral stones?. ¿Podría el espesor de la pared ureteral afectar a los parámetros intra y postoperatorios de la ureteroscopia para el tratamiento de piedras ureterales proximales?. Actas Urol Esp 2019; 43: 474-479
- 16 Pace KT, Kroczak T, Wijnstok NJ. et al. Same Session Bilateral Ureteroscopy for Multiple Stones: Results from the CROES URS Global Study. J Urol 2017; 198: 130-137
- 17 Imamura Y, Kawamura K, Sazuka T. et al. Development of a nomogram for predicting the stone-free rate after transurethral ureterolithotripsy using semirigid ureteroscope. Int J Urol 2013; 20: 616-621
- 18 Oitchayomi A, Doerfler A, Le Gal S. et al. Flexible and rigid ureteroscopy in outpatient surgery. BMC urology 2016; 16: 6
- 19 Leijte JA, Oddens JR, Lock TM. Holmium laser lithotripsy for ureteral calculi: predictive factors for complications and success. Journal of endourology 2008; 22: 257-260
- 20 Khalil M. Management of impacted proximal ureteral stone: Extracorporeal shock wave lithotripsy versus ureteroscopy with holmium: YAG laser lithotripsy. Urology annals 2013; 5: 88
- 21 Yencilek F, Sarica K, Erturhan S. et al. Treatment of ureteral calculi with semirigid ureteroscopy: where should we stop?. Urologia internationalis 2010; 84: 260-264
- 22 Hendrikx AJM, Strijbos WEM. et al. Treatment for extended-mid and distal ureteral stones: SWL or ureteroscopy? Results of a multicenter study. Journal of endourology 1999; 13: 727-733
- 23 Mandal S, Goel A, Singh M. et al. Clavien classification of semirigid ureteroscopy complications: A prospective study. Urology 2012; 80: 995-1001
- 24 Liong M, Clayman RV, Gittes RF. et al. Treatment options for proximal ureteral urolithiasis: review and recommendations. The Journal of urology 1989; 141: 504-509
- 25 Lee YH, Tsai JY, Jiaan BP. et al. Prospective randomized trial comparing shock wave lithotripsy and ureteroscopic lithotripsy for management of large upper third ureteral stones. Urology 2006; 67: 480-484
- 26 Dongol UM, Acharya L, Subba K. et al. Semirigid ureteroscopy with pneumatic lithotripsy for ureteral stone. J Nepal Health Res Counc 2011; 9: 21-24
- 27 Kim JW, Chae JY, Kim JW. et al. Computed tomography-based novel prediction model for the stone-free rate of ureteroscopic lithotripsy. Urolithiasis 2014; 42: 75-79
- 28 Strohmaier WL, Schubert G, Rosenkranz T. et al. Comparison of extracorporeal shock wave lithotripsy and ureteroscopy in the treatment of ureteral calculi: a prospective study. European urology 1999; 36: 376-379
- 29 Liu Y, Zhou Z, Xia A. et al. Clinical observation of different minimally invasive surgeries for the treatment of impacted upper ureteral calculi. Pak J Med Sci 2013; 29: 1358-62
- 30 Assimos D. Guideline Statement. AUA 2016; 196: 1153-1160