CC BY-NC-ND 4.0 · SynOpen 2022; 06(02): 110-131
DOI: 10.1055/a-1826-2852
Graphical Review

Aryl Methyl Ketones: Versatile Synthons in the Synthesis of Heterocyclic Compounds

,
,
Mark J. Mitton-Fry
The Dr. Ralph and Marian Falk Medical Research Trust (Transformational Award) and the National Institutes of Health (NIH) (R21 AI148986) provided financial support.


Abstract

The synthesis of aromatic heterocycles has attracted substantial attention due to the abundance of these heterocycles in drug molecules, natural products, and other compounds of biological interest. Accordingly, there is a demand for straightforward synthetic protocols toward such compounds using readily available starting materials. In the past decade, there have been substantial developments in heterocycle synthesis, especially in metal-catalyzed and iodine-assisted approaches. This graphical review focuses on notable reactions from the past decade using aryl and heteroaryl methyl ketones as starting materials, including representative reaction mechanisms.



Publication History

Received: 12 January 2022

Accepted after revision: 06 April 2022

Accepted Manuscript online:
14 April 2022

Article published online:
08 June 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Buskes MJ, Blanco MJ. Molecules 2020; 25: 3493
    • 1b Zhang TY. The Evolving Landscape of Heterocycles in Drugs and Drug Candidates . In Advances in Heterocyclic Chemistry, Vol. 121. Scriven EF. V, Ramsden CA. Academic Press; Cambridge: 2017. Chap. 1, 1
    • 1c Khan I, Zaib S, Ibrar A. Org. Chem. Front. 2020; 7: 3734
    • 1d Lasso JD, Castillo-Pazos DJ, Li CJ. Chem. Soc. Rev. 2021; 50: 10955
    • 1e Yasui O, Ishihara K. Science 2010; 328: 1376
    • 1f Yusubov MS, Zhdankin VV. Resour.-Effic. Technol. 2015; 1: 49
    • 1g Renault O, Dallemagne P, Rault S. Org. Prep. Proced. Int. 1999; 31: 324
    • 1h Garrido F, Raeppel S, Mann A, Lautens M. Tetrahedron Lett. 2001; 42: 265
    • 1i Ramgren SD, Garg NK. Org. Lett. 2014; 16: 824
    • 1j Rajai-Daryasarei S, Gohari MH, Mohammadi N. New J. Chem. 2021; 45: 20486
    • 2a Das P, Ray S, Mukhopadhyay C. Org. Lett. 2013; 15: 5622
    • 2b Wu X, Zhao P, Geng X, Wang C, Wu Y.-d, Wu A.-x. Org. Lett. 2018; 20: 688
    • 2c Xu H, Wang F.-J, Xin M, Zhang Z. Eur. J. Org. Chem. 2016; 925
    • 2d Wu J, Chen X, Xie Y, Guo Y, Zhang Q, Deng G.-J. J. Org. Chem. 2017; 82: 5743
    • 2e Ghosh M, Mishra S, Hajra A. J. Org. Chem. 2015; 80: 5364
    • 2f Manna S, Antonchick AP. Org. Lett. 2015; 17: 4300
    • 2g Wang M, Xiang J.-C, Cheng Y, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 524
    • 2h Cai Z.-J, Wang S.-Y, Ji S.-J. Org. Lett. 2012; 14: 6068
    • 2i Liu C.-K, Yang Z, Zeng Y, Guo K, Fang Z, Li B. Org. Chem. Front. 2017; 4: 1508
    • 2j Zhang J, Gao Q, Wu X, Geng X, Wu Y.-D, Wu A. Org. Lett. 2016; 18: 1686
    • 2k de Toledo I, Grigolo TA, Bennett JM, Elkins JM, Pilli RA. J. Org. Chem. 2019; 84: 14187
    • 2l Geng X, Wang C, Huang C, Bao Y, Zhao P, Zhou Y, Wu Y.-D, Feng L.-l, Wu A.-X. Org. Lett. 2020; 22: 140
    • 2m Aegurla B, Peddinti RK. Org. Biomol. Chem. 2017; 15: 9643
    • 2n Whitt J, Duke C, Ali MA, Chambers SA, Khan MM. K, Gilmore D, Alam MA. ACS Omega 2019; 4: 14284
    • 2o Fang Z, Yin H, Lin L, Wen S, Xie L, Huang Y, Weng Z. J. Org. Chem. 2020; 85: 8714
    • 2p Gao Q, Liu S, Wu X, Zhang J, Wu A. Org. Lett. 2015; 17: 2960
    • 2q Wu X, Geng X, Zhao P, Zhang J, Wu Y.-d, Wu A.-x. Chem. Commun. 2017; 53: 3438
    • 2r Xue W.-J, Li Q, Zhu Y.-P, Wang J.-G, Wu A.-X. Chem. Commun. 2012; 48: 3485
    • 2s Dai P, Tan X, Luo Q, Yu X, Zhang S, Liu F, Zhang W.-H. Org. Lett. 2019; 21: 5096
    • 2t Gu J, Fang Z, Yang Z, Li X, Zhu N, Wan L, Wei P, Guo K. RSC Adv. 2016; 6: 89073
    • 2u Verbelen B, Dehaen W. Org. Lett. 2016; 18: 6412
    • 2v Liu Y, Nie G, Zhou Z, Jia L, Chen Y. J. Org. Chem. 2017; 82: 9198
    • 2w Bonache MA, Moreno-Fernández S, Miguel M, Sabater-Muñoz B, González-Muñiz R. ACS Comb. Sci. 2018; 20: 694
    • 2x Gao M, Yang Y, Wu Y.-D, Deng C, Shu W.-M, Zhang D.-X, Cao L.-P, She N.-F, Wu A.-X. Org. Lett. 2010; 12: 4026
    • 2y Sribalan R, Sangili A, Banuppriya G, Padmini V. New J. Chem. 2017; 41: 3414
    • 2z Sadeghi M, Safari J, Zarnegar Z. RSC Adv. 2016; 6: 64749
    • 3a Yin G, Liu Q, Ma J, She N. Green Chem. 2012; 14: 1796
    • 3b Shabalin DA, Dvorko MY, Schmidt EY, Trofimov BA. Org. Biomol. Chem. 2021; 19: 2703
    • 3c Huang H, Ji X, Wu W, Huang L, Jiang H. J. Org. Chem. 2013; 78: 3774
    • 3d Xi L.-Y, Zhang R.-Y, Liang S, Chen S.-Y, Yu X.-Q. Org. Lett. 2014; 16: 5269
    • 3e Sharma R, Patel N, Vishwakarma RA, Bharatam PV, Bharate SB. Chem. Commun. 2016; 52: 1009
    • 3f Xiang J.-C, Wang M, Cheng Y, Wu A.-X. Org. Lett. 2016; 18: 24
    • 3g Wu X, Zhang J, Liu S, Gao Q, Wu A. Adv. Synth. Catal. 2016; 358: 218
    • 3h Su L, Sun K, Pan N, Liu L, Sun M, Dong J, Zhou Y, Yin S.-F. Org. Lett. 2018; 20: 3399
    • 3i Jadhav SD, Singh A. Org. Lett. 2017; 19: 5673
    • 3j Tiwari AR, Nath SR, Joshi KA, Bhanage BM. J. Org. Chem. 2017; 82: 13239
    • 3k Zhao P, Zhou Y, Yu X.-X, Huang C, Wu Y.-D, Yin G, Wu A.-X. Org. Lett. 2020; 22: 8528
    • 3l Viswanadham KK. D. R, Prathap Reddy M, Sathyanarayana P, Ravi O, Kant R, Bathula SR. Chem. Commun. 2014; 50: 13517
    • 3m Lim S.-G, Lee JH, Moon CW, Hong J.-B, Jun C.-H. Org. Lett. 2003; 5: 2759
    • 3n Pilgrim BS, Gatland AE, McTernan CT, Procopiou PA, Donohoe TJ. Org. Lett. 2013; 15: 6190
    • 4a Gutiérrez RU, Correa HC, Bautista R, Vargas JL, Jerezano AV, Delgado F, Tamariz J. J. Org. Chem. 2013; 78: 9614
    • 4b Gao Q, Liu S, Wu X, Wu A. Org. Lett. 2014; 16: 4582
    • 4c Gao Q, Liu S, Wu X, Zhang J, Wu A. J. Org. Chem. 2015; 80: 5984
    • 4d Wang R, Fan H, Zhao W, Li F. Org. Lett. 2016; 18: 3558
    • 4e Chakraborty G, Sikari R, Das S, Mondal R, Sinha S, Banerjee S, Paul ND. J. Org. Chem. 2019; 84: 2626
    • 4f Das S, Sinha S, Samanta D, Mondal R, Chakraborty G, Brandaõ P, Paul ND. J. Org. Chem. 2019; 84: 10160
    • 4g Wu X, Geng X, Zhao P, Zhang J, Gong X, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 1550
    • 4h Wakade SB, Tiwari DK, Ganesh PS. K. P, Phanindrudu M, Likhar PR, Tiwari DK. Org. Lett. 2017; 19: 4948
    • 4i Geng X, Wu X, Zhao P, Zhang J, Wu Y.-D, Wu A.-X. Org. Lett. 2017; 19: 4179
    • 4j Zhao P, Wu X, Zhou Y, Geng X, Wang C, Wu Y.-d, Wu A.-X. Org. Lett. 2019; 21: 2708
    • 4k Aksenov AV, Smirnov AN, Aksenov NA, Aksenova IV, Matheny JP, Rubin M. RSC Adv. 2015; 5: 8647
    • 4l Wu J, Zhou Y, Wu T, Zhou Y, Chiang C.-W, Lei A. Org. Lett. 2017; 19: 6432
    • 4m Liao Y, Qi H, Chen S, Jiang P, Zhou W, Deng G.-J. Org. Lett. 2012; 14: 6004
    • 4n Xue W.-J, Guo Y.-Q, Gao F.-F, Li H.-Z, Wu A.-X. Org. Lett. 2013; 15: 890
    • 4o Gao Q, Wu X, Jia F, Liu M, Zhu Y, Cai Q, Wu A. J. Org. Chem. 2013; 78: 2792
    • 4p Nguyen TB, Pasturaud K, Ermolenko L, Al-Mourabit A. Org. Lett. 2015; 17: 2562
    • 4q Huynh TV, Doan KV, Luong NT. K, Nguyen DT. P, Doan SH, Nguyen TT, Phan NT. S. RSC Adv. 2020; 10: 18423
    • 5a Le Z.-G, Xie Z.-B, Xu J.-P. Molecules 2012; 17: 13368
    • 5b Bagdi AK, Rahman M, Santra S, Majee A, Hajra A. Adv. Synth. Catal. 2013; 355: 1741
    • 5c Stasyuk AJ, Banasiewicz M, Cyrański MK, Gryko DT. J. Org. Chem. 2012; 77: 5552
    • 5d Mohan DC, Donthiri RR, Rao SN, Adimurthy S. Adv. Synth. Catal. 2013; 355: 2217
    • 5e Zhang Y, Chen Z, Wu W, Zhang Y, Su W. J. Org. Chem. 2013; 78: 12494
    • 5f Cai Z.-J, Wang S.-Y, Ji S.-J. Adv. Synth. Catal. 2013; 355: 2686
    • 5g Wang F.-J, Xu H, Xin M, Zhang Z. Mol. Diversity 2016; 20: 659
    • 5h Kumar GS, Ragini SP, Kumar AS, Meshram HM. RSC Adv. 2015; 5: 51576
    • 5i Ge W, Zhu X, Wei Y. Eur. J. Org. Chem. 2013; 6015
    • 5j Meng X, Yu C, Chen G, Zhao P. Catal. Sci. Technol. 2015; 5: 372
    • 5k Liu S, Xi H, Zhang J, Wu X, Gao Q, Wu A. Org. Biomol. Chem. 2015; 13: 8807
    • 5l Wu Y.-D, Geng X, Gao Q, Zhang J, Wu X, Wu A.-X. Org. Chem. Front. 2016; 3: 1430
    • 5m Mukhopadhyay S, Dighe SU, Kolle S, Shukla PK, Batra S. Eur. J. Org. Chem. 2016; 3836
    • 5n Udavant RN, Yadav AR, Shinde SS. Eur. J. Org. Chem. 2018; 3432
    • 5o Okai H, Tanimoto K, Ohkado R, Iida H. Org. Lett. 2020; 22: 8002
    • 5p Zhu Y.-p, Fei Z, Liu M.-c, Jia F.-c, Wu A.-x. Org. Lett. 2013; 15: 378
    • 5q Mohammed S, Vishwakarma RA, Bharate SB. J. Org. Chem. 2015; 80: 6915
    • 6a Ravi O, Shaikh A, Upare A, Singarapu KK, Bathula SR. J. Org. Chem. 2017; 82: 4422
    • 6b Xu C, Yin G, Jia F.-C, Wu Y.-D, Wu A.-X. Org. Lett. 2021; 23: 2559
    • 6c Mamedov VA, Zhukova NA, Beschastnova TN, Syakaev VV, Krivolapov DB, Mironova EV, Zamaletdinova AI, Rizvanov IK, Latypov SK. J. Org. Chem. 2015; 80: 1375
    • 6d Nguyen TB, Retailleau P. Org. Lett. 2017; 19: 3887
    • 6e Nguyen LA, Nguyen TT. T, Ngo QA, Nguyen TB. Org. Biomol. Chem. 2021; 19: 6015
    • 6f Ilangovan A, Satish G. Org. Lett. 2013; 15: 5726
    • 6g Ilangovan A, Satish G. J. Org. Chem. 2014; 79: 4984
    • 6h Gao F.-F, Xue W.-J, Wang J.-G, Wu A.-X. Tetrahedron 2014; 70: 4331
    • 6i Huo J, Yang Y, Wang C. Org. Lett. 2021; 23: 3384
    • 6j Verma A, Kumar S. Org. Lett. 2016; 18: 4388
    • 6k Wang M, Tang B.-C, Ma J.-T, Wang Z.-X, Xiang J.-C, Wu Y.-D, Wang J.-G, Wu A.-X. Org. Biomol. Chem. 2019; 17: 1535
    • 6l Mohan DC, Ravi C, Pappula V, Adimurthy S. J. Org. Chem. 2015; 80: 6846
    • 6m Wang W, Han J, Sun J, Liu Y. J. Org. Chem. 2017; 82: 2835
    • 6n Wu X, Zhao P, Geng X, Zhang J, Gong X, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 3319
    • 6o Rossler MD, Hartgerink CT, Zerull EE, Boss BL, Frndak AK, Mason MM, Nickerson LA, Romero EO, Van de Burg JE, Staples RJ, Anderson CE. Org. Lett. 2019; 21: 5591
    • 7a Zhang Y, Wang D, Cui S. Org. Lett. 2015; 17: 2494
    • 7b Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241
    • 7c Kissman HM, Farnsworth DW, Witkop B. J. Am. Chem. Soc. 1952; 74: 3948
    • 7d Lu X.-M, Cai Z.-J, Li J, Wang S.-Y, Ji S.-J. RSC Adv. 2015; 5: 51501
    • 7e Geng X, Wu X, Wang C, Zhao P, Zhou Y, Sun X, Wang L.-J, Guan W.-J, Wu Y.-D, Wu A.-X. Chem. Commun. 2018; 54: 12730
    • 7f Guo T, Han L, Wang T, Lei L, Zhang J, Xu D. J. Org. Chem. 2020; 85: 9117
    • 7g Schmidt EY, Semenova NV, Tatarinova IV, Ushakov IA, Vashchenko AV, Trofimov BA. Org. Lett. 2019; 21: 4275
    • 7h Chung H, Kim J, González-Montiel GA, Ha-Yeon Cheong P, Lee HG. Org. Lett. 2021; 23: 1096
    • 7i Neochoritis CG, Tsoleridis CA, Stephanidou-Stephanatou J, Kontogiorgis CA, Hadjipavlou-Litina DJ. J. Med. Chem. 2010; 53: 8409
    • 7j Geng X, Wang C, Huang C, Zhao P, Zhou Y, Wu Y.-D, Wu A.-X. Org. Lett. 2019; 21: 7504
    • 7k Lin Y.-m, Lu G.-p, Wang R.-k, Yi W.-b. Org. Lett. 2016; 18: 6424
    • 7l Huang X, Rong N, Li P, Shen G, Li Q, Xin N, Cui C, Cui J, Yang B, Li D, Zhao C, Dou J, Wang B. Org. Lett. 2018; 20: 3332
    • 7m Jiang J, Tuo X, Fu Z, Huang H, Deng G.-J. Org. Biomol. Chem. 2020; 18: 3234
    • 7n Marpna ID, Shangpliang OR, Wanniang K, Kshiar B, Lipon TM, Laloo BM, Myrboh B. ACS Omega 2021; 6: 14518
    • 7o Balaguez RA, Betin ES, Barcellos T, Lenardão EJ, Alves D, Schumacher RF. New J. Chem. 2017; 41: 1483
    • 7p Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng G.-J. Org. Lett. 2019; 21: 3518
    • 7q Mukhopadhyay C, Das P, Butcher RJ. Org. Lett. 2011; 13: 4664
    • 8a Yao X, Shao Y, Hu M, Xia Y, Cheng T, Chen J. Org. Lett. 2019; 21: 7697
    • 8b Ramig K, Alli S, Cheng M, Leung R, Razi R, Washington M, Kudzma LV. Synlett 2007; 2868
    • 8c Manjappa KB, Peng Y.-T, Liou T.-J, Yang D.-Y. RSC Adv. 2017; 7: 45269
    • 8d Zheng K, Zhuang S, Shu W, Wu Y, Yang C, Wu A. Chem. Commun. 2018; 54: 11897
    • 8e Rogness DC, Larock RC. J. Org. Chem. 2010; 75: 2289
    • 8f Chen S, Li Y, Ni P, Huang H, Deng G.-J. Org. Lett. 2016; 18: 5384
    • 8g Chen S, Li Y, Ni P, Yang B, Huang H, Deng G.-J. J. Org. Chem. 2017; 82: 2935
    • 8h Chen S, Jiang P, Wang P, Pei Y, Huang H, Xiao F, Deng G.-J. J. Org. Chem. 2019; 84: 3121
    • 8i Gu Y, Huang W, Chen S, Wang X. Org. Lett. 2018; 20: 4285
    • 8j Battini N, Padala AK, Mupparapu N, Vishwakarma RA, Ahmed QN. RSC Adv. 2014; 4: 26258
    • 8k Geng X, Wang C, Zhao P, Zhou Y, Wu Y.-D, Wu A.-X. Org. Lett. 2019; 21: 4939
    • 8l Gao Q, Wu X, Liu S, Wu A. Org. Lett. 2014; 16: 1732
    • 8m Wu X, Geng X, Zhao P, Wu Y.-d, Wu A.-x. Org. Lett. 2017; 19: 4584
    • 8n Pham PH, Nguyen QT. D, Tran NK. Q, Nguyen VH. H, Doan SH, Ha HQ, Truong T, Phan NT. S. Eur. J. Org. Chem. 2018; 4431
    • 8o Mishra S, Monir K, Mitra S, Hajra A. Org. Lett. 2014; 16: 6084
    • 8p Zhang Q, Wang B, Ma H, Ablajan K. New J. Chem. 2019; 43: 17000
    • 8q Zhou P, Huang Y, Wu W, Zhou J, Yu W, Jiang H. Org. Lett. 2019; 21: 9976
    • 8r Pham PH, Nguyen KX, Pham HT. B, Nguyen TT, Phan NT. S. Org. Lett. 2019; 21: 8795
    • 8s Brendel M, Sakhare PR, Dahiya G, Subramanian P, Kaliappan KP. J. Org. Chem. 2020; 85: 8102
    • 8t Zhang S, Li L, Xin L, Liu W, Xu K. J. Org. Chem. 2017; 82: 2399
    • 9a Okuma K, Koga T, Ozaki S, Suzuki Y, Horigami K, Nagahora N, Shioji K, Fukuda M, Deshimaru M. Chem. Commun. 2014; 50: 15525
    • 9b Min L, Pan B, Gu Y. Org. Lett. 2016; 18: 364
    • 9c Aksenov AV, Aksenov DA, Orazova NA, Aksenov NA, Griaznov GD, De Carvalho A, Kiss R, Mathieu V, Kornienko A, Rubin M. J. Org. Chem. 2017; 82: 3011
    • 9d Zhang J, Wu X, Gao Q, Geng X, Zhao P, Wu Y.-D, Wu A. Org. Lett. 2017; 19: 408
    • 9e Yuan S, Yue Y.-L, Zhang D.-Q, Zhang J.-Y, Yu B, Liu H.-M. Chem. Commun. 2020; 56: 11461
    • 9f Kale A, Bingi C, Ragi NC, Sripadi P, Tadikamalla PR, Atmakur K. Synthesis 2017; 49: 1603
    • 9g Mani GS, Rao AV. S, Tangella Y, Sunkari S, Sultana F, Namballa HK, Shankaraiah N, Kamal A. New. J. Chem. 2018; 42: 15820
    • 9h Ni P, Tan J, Zhao W, Huang H, Xiao F, Deng G.-J. Org. Lett. 2019; 21: 3687
    • 9i Yang R.-Y, Sun J, Tao Y, Sun Q, Yan C.-G. J. Org. Chem. 2017; 82: 13277