Subscribe to RSS
DOI: 10.1055/a-1826-0777
Mechanical Loading on Cementoblasts: A Mini Review
Mechanische Belastung von Zementoblasten: Ein Mini-Review
Abstract
Orthodontic treatments are concomitant with mechanical forces and thereby cause teeth movements. The applied forces are transmitted to the tooth root and the periodontal ligaments which is compressed on one side and tensed up on the other side. Indeed, strong forces can lead to tooth root resorption and the crown-to-tooth ratio is reduced with the potential for significant clinical impact. The cementum, which covers the tooth root, is a thin mineralized tissue of the periodontium that connects the periodontal ligament with the tooth and is build up by cementoblasts. The impact of tension and compression on these cells is investigated in several in vivo and in vitro studies demonstrating differences in protein expression and signaling pathways. In summary, osteogenic marker changes indicate that cyclic tensile forces support whereas static tension inhibits cementogenesis. Furthermore, cementogenesis experiences the same protein expression changes in static conditions as static tension, but cyclic compression leads to the exact opposite of cyclic tension. Consistent with marker expression changes, the singaling pathways of Wnt/ß-catenin and RANKL/OPG show that tissue compression leads to cementum degradation and tension forces to cementogenesis. However, the cementum, and in particular its cementoblasts, remain a research area which should be explored in more detail to understand the underlying mechanism of bone resorption and remodeling after orthodontic treatments.
Kurzfassung
Kieferorthopädische Behandlungen verursachen Zahnbewegungen, indem sie Kräfte auf die Zähne ausüben. Die daraus resultierenden Kräfte führen dazu, dass die Zahnwurzel und das parodontale Ligament auf der einen Seite komprimiert und auf der anderen Seite gedehnt werden. Das Zement, das die Zahnwurzel bedeckt, ist ein dünnes mineralisiertes Gewebe des Zahnhalteapparats, welches das parodontale Ligament mit dem Zahn verbindet und von Zementoblasten gebildet wird. In vivo- und in vitro-Studien untersuchen die Auswirkungen von Zug- und Druckkräften auf diese Zellen, indem sie Unterschiede in der Proteinexpression und den Signalwegen aufzeigen. Zusammenfassend lässt sich sagen, dass die Veränderungen der osteogenen Marker darauf hindeuten, dass zyklische Zugkräfte die Zementbildung unterstützen, während statische Spannungen die Zementbildung hemmen. Darüber hinaus erfährt die Zementogenese unter statischen Bedingungen die gleichen Veränderungen der Proteinexpression wie unter statischer Spannung, aber zyklische Kompression führt zum genauen Gegenteil von zyklischer Spannung. In Übereinstimmung mit den Veränderungen der Markerexpression zeigen die Signalwege von Wnt/ß-Catenin und RANKL/OPG, dass Kompression zum Zementabbau und Zugkräfte zur Zementbildung führt. Das Zementum, genauer gesagt die Zementoblasten, bleiben jedoch ein Forschungsgebiet, dass noch eingehender erforscht werden muss.
Publication History
Received: 20 December 2021
Accepted after revision: 08 April 2022
Article published online:
30 May 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
- 1 Henneman S, Von den Hoff JW, Maltha JC. Mechanobiology of tooth movement. European Journal of Orthodontics 2008; 30: 299-306
- 2 Elhaddaoui R, Qoraich HS, Bahije L. et al. Orthodontic aligners and root resorption: A systematic review. International Orthodontics 2017; 15: 1-12
- 3 Feller L, Khammissa RAG, Thomadakis G. et al. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events. BioMed Research International 2016; 2016: 1-7
- 4 Yamaguchi M, Fukasawa S. Is Inflammation a Friend or Foe for Orthodontic Treatment?: Inflammation in Orthodontically Induced Inflammatory Root Resorption and Accelerating Tooth Movement. IJMS 2021; 22: 2388
- 5 Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part II: The clinical aspects. Angle Orthod 2002; 72: 180-184
- 6 Huang L, Meng Y, Ren A. et al. Response of cementoblast-like cells to mechanical tensile or compressive stress at physiological levels in vitro. Mol Biol Rep 2009; 36: 1741-1748
- 7 Roscoe MG, Meira JBC, Cattaneo PM. Association of orthodontic force system and root resorption: A systematic review. American Journal of Orthodontics and Dentofacial Orthopedics 2015; 147: 610-626
- 8 Iglesias-Linares A, Sonnenberg B, Solano B. et al. Orthodontically induced external apical root resorption in patients treated with fixed appliances vs removable aligners. The Angle Orthodontist 2017; 87: 3-10
- 9 Li Y, Deng S, Mei L. et al. Prevalence and severity of apical root resorption during orthodontic treatment with clear aligners and fixed appliances: a cone beam computed tomography study. Prog Orthod 2020; 21: 1
- 10 Aras B, Cheng LL, Turk T. et al. Physical properties of root cementum: Part 23. Effects of 2 or 3 weekly reactivated continuous or intermittent orthodontic forces on root resorption and tooth movement: A microcomputed tomography study. American Journal of Orthodontics and Dentofacial Orthopedics 2012; 141: e29-e37
- 11 Jing Z, Chen Z, Jiang Y. Effects of DSPP Gene Mutations on Periodontal Tissues. Global Medical Genetics 2021; 08: 090-094
- 12 Hu J-C, Simmer J. Developmental biology and genetics of dental malformations. Orthod Craniofac Res 2007; 10: 45-52
- 13 Li Y, Jacox LA, Little SH. et al. Orthodontic tooth movement: The biology and clinical implications. The Kaohsiung Journal of Medical Sciences 2018; 34: 207-214
- 14 Krishnan V, Davidovitch Z. On a Path to Unfolding the Biological Mechanisms of Orthodontic Tooth Movement. J Dent Res 2009; 88: 597-608
- 15 Wise GE, King GJ. Mechanisms of Tooth Eruption and Orthodontic Tooth Movement. J Dent Res 2008; 87: 414-434
- 16 D’Errico JA, Macneil RL, Takata T. et al. Expression of bone associated markers by tooth root lining cells, in situ and in vitro. Bone 1997; 20: 117-126
- 17 Foster BL. On the discovery of cementum. J Periodontal Res 2017; 52: 666-685
- 18 Nanci A. Hrsg. Chapter 1 – Structure of the Oral Tissues. In: Ten Cate’s Oral Histology. Eighth Edition St. Louis (MO): Mosby; 2013: 1-13
- 19 Popowics T, Foster BL, Swanson EC. et al. Defining the roots of cementum formation. Cells Tissues Organs 2005; 181: 248-257
- 20 Yao W, Li X, Zhao B. et al. Combined effect of TNF-α and cyclic stretching on gene and protein expression associated with mineral metabolism in cementoblasts. Archives of Oral Biology 2017; 73: 88-93
- 21 Gao J, Symons AL, Haase H. et al. Should Cementoblasts Express Alkaline Phosphatase Activity? Preliminary Study of Rat Cementoblasts In Vitro. Journal of Periodontology 1999; 70: 951-959
- 22 Wang L, Hu H, Cheng Y. et al. Screening the Expression Changes in MicroRNAs and Their Target Genes in Mature Cementoblasts Stimulated with Cyclic Tensile Stress. IJMS 2016; 17: 2024
- 23 Yang B, Sun H, Song F. et al. Yes-associated protein 1 promotes the differentiation and mineralization of cementoblast. J Cell Physiol 2018; 233: 2213-2224
- 24 Arzate H, Zeichner-David M, Mercado-Celis G. Cementum proteins: role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 2000 2015; 67: 211-233
- 25 Kagayama M, Li HC, Zhu J. et al. Expression of osteocalcin in cementoblasts forming acellular cementum. J Periodontal Res 1997; 32: 273-278
- 26 Foster BL. Methods for studying tooth root cementum by light microscopy. Int J Oral Sci 2012; 4: 119-128
- 27 Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontol 2000 2006; 40: 11-28
- 28 Hammarström L, Alatli I, Fong C. Origins of cementum. Oral Diseases 2008; 2: 63-69
- 29 Bosshardt DD. Are Cementoblasts a Subpopulation of Osteoblasts or a Unique Phenotype?. J Dent Res 2005; 84: 390-406
- 30 Abou Neel EA, Aljabo A, Strange A. et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine 2016; 11: 4743-4763
- 31 Choi H, Kim T-H, Yang S. et al. A Reciprocal Interaction between β-Catenin and Osterix in Cementogenesis. Sci Rep 2017; 7: 8160
- 32 Lavelle CLB. Applied Oral Physiology. Butterworth-Heinemann; 2013
- 33 Moon J-S, Kim M-J, Ko H-M. et al. The role of Hedgehog signaling in cementoblast differentiation. Arch Oral Biol 2018; 90: 100-107
- 34 Lao M, Marino V, Bartold PM. Immunohistochemical study of bone sialoprotein and osteopontin in healthy and diseased root surfaces. J Periodontol 2006; 77: 1665-1673
- 35 Singh A, Gill G, Kaur H. et al. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog Orthod 2018; 19: 18
- 36 Hough TA, Polewski M, Johnson K. et al. Novel mouse model of autosomal semidominant adult hypophosphatasia has a splice site mutation in the tissue nonspecific alkaline phosphatase gene Akp2. J Bone Miner Res 2007; 22: 1397-1407
- 37 Camilleri S, McDonald F. Runx2 and dental development. Eur J Oral Sci 2006; 114: 361-373
- 38 Arzate H, Chimal-Monroy J, Hernández-Lagunas L. et al. Human cementum protein extract promotes chondrogenesis and mineralization in mesenchymal cells. J Periodontal Res 1996; 31: 144-148
- 39 Montoya G, Arenas J, Romo E. et al. Human recombinant cementum attachment protein (hrPTPLa/CAP) promotes hydroxyapatite crystal formation in vitro and bone healing in vivo. Bone. 2014; 69: 154-164
- 40 Wu D, Ikezawa K, Parker T. et al. Characterization of a collagenous cementum-derived attachment protein. J Bone Miner Res 1996; 11: 686-692
- 41 Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part I: The basic science aspects. Angle Orthod 2002; 72: 175-179
- 42 Chen X, Liu Y, Miao L. et al. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration. Int J Nanomedicine 2016; 11: 3145-3158
- 43 Niederau C, Craveiro RB, Azraq I. et al. Selection and validation of reference genes by RT-qPCR for murine cementoblasts in mechanical loading experiments simulating orthodontic forces in vitro. Sci Rep 2020; 10: 10893
- 44 Turkkahraman H, Yuan X, Salmon B. et al. Root resorption and ensuing cementum repair by Wnt/β-catenin dependent mechanism. American Journal of Orthodontics and Dentofacial Orthopedics 2020; 158: 16-27
- 45 Middleton J, Jones ML, Wilson AN. Three-dimensional analysis of orthodontic tooth movement. Journal of Biomedical Engineering 1990; 12: 319-327
- 46 Hirashima S, Ohta K, Kanazawa T. et al. Cellular network across cementum and periodontal ligament elucidated by FIB/SEM tomography. Microscopy 2020; 69: 53-58
- 47 Calamari ZT, Hu JK-H, Klein OD. Tissue Mechanical Forces and Evolutionary Developmental Changes Act Through Space and Time to Shape Tooth Morphology and Function. BioEssays 2018; 40: 1800140
- 48 Chan E, Darendeliler MA. Physical properties of root cementum: Part 7. Extent of root resorption under areas of compression and tension. American Journal of Orthodontics and Dentofacial Orthopedics 2006; 129: 504-510
- 49 Shah R, Zermeno JP. Interfacing the basic sciences and clinical orthodontics. J Orthod 2019; 46: 29-34
- 50 Alikhani M, Alyami B, Lee IS. et al. Saturation of the biological response to orthodontic forces and its effect on the rate of tooth movement. Orthod Craniofac Res 2015; 18: 8-17
- 51 Murphy CA, Chandhoke T, Kalajzic Z. et al. Effect of corticision and different force magnitudes on orthodontic tooth movement in a rat model. American Journal of Orthodontics and Dentofacial Orthopedics 2014; 146: 55-66
- 52 Van Leeuwen E, Kuijpers-Jagtman A, Von den Hoff J. et al. Rate of orthodontic tooth movement after changing the force magnitude: an experimental study in beagle dogs: Altering forces and tooth movement. Orthodontics & Craniofacial Research 2010; 13: 238-245
- 53 Liu Y, Du H, Wang Y. et al. Osteoprotegerin-Knockout Mice Developed Early Onset Root Resorption. Journal of Endodontics 2016; 42: 1516-1522
- 54 Wolf M, Ao M, Chavez MB. et al. Reduced Orthodontic Tooth Movement in Enpp1 Mutant Mice with Hypercementosis. J Dent Res 2018; 97: 937-945
- 55 Thumbigere-Math V, Alqadi A, Chalmers NI. et al. Hypercementosis Associated with ENPP1 Mutations and GACI. J Dent Res 2018; 97: 432-441
- 56 D’Errico JA, Ouyang H, Berry JE. et al. Immortalized cementoblasts and periodontal ligament cells in culture. Bone 1999; 25: 39-47
- 57 D’Errico JA, Berry JE, Ouyang H. et al. Employing a Transgenic Animal Model to Obtain Cementoblasts In Vitro. Journal of Periodontology 2000; 71: 63-72
- 58 Li S, Li F, Zou S. et al. PTH1R signalling regulates the mechanotransduction process of cementoblasts under cyclic tensile stress. European Journal of Orthodontics 2018; 40: 537-543
- 59 Korb K, Katsikogianni E, Zingler S. et al. Inhibition of AXUD1 attenuates compression-dependent apoptosis of cementoblasts. Clin Oral Invest 2016; 20: 2333-2341
- 60 Diercke K, Kohl A, Lux CJ. et al. Compression of human primary cementoblasts leads to apoptosis: A possible cause of dental root resorption?. J Orofac Orthop 2014; 75: 430-445
- 61 Diercke K, Kohl A, Lux CJ. et al. IL-1β and compressive forces lead to a significant induction of RANKL-expression in primary human cementoblasts. J Orofac Orthop 2012; 73: 397-412
- 62 Zhang Y, Huang Y, Zhao H. et al. Cementogenesis is inhibited under a mechanical static compressive force via Piezo1. The Angle Orthodontist 2017; 87: 618-624
- 63 Li Y, Hu Z, Zhou C. et al. Intermittent parathyroid hormone (PTH) promotes cementogenesis and alleviates the catabolic effects of mechanical strain in cementoblasts. BMC Cell Biol 2017; 18: 19
- 64 Liu H, Huang Y, Zhang Y. et al. Long noncoding RNA expression profile of mouse cementoblasts under compressive force. The Angle Orthodontist 2019; 89: 455-463
- 65 Yu H, Ren Y, Sandham A. et al. Mechanical Tensile Stress Effects on the Expression of Bone Sialoprotein in Bovine Cementoblasts. The Angle Orthodontist 2009; 79: 346-352
- 66 Matsunaga K, Ito C, Nakakogawa K. et al. Response to light compressive force in human cementoblasts in vitro. Biomed Res 2016; 37: 293-298
- 67 Tian Y, Huang L, Guo Y-W. et al. Expression of alkaline phosphatase in immortalized murine cementoblasts in response to compression-force. Saudi Med J 2011; 32: 1235-1240
- 68 Diercke K, König A, Kohl A. et al. Human primary cementoblasts respond to combined IL-1β stimulation and compression with an impaired BSP and CEMP-1 expression. European Journal of Cell Biology 2012; 91: 402-412
- 69 Huang P, Yan R, Zhang X. et al. Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacology & Therapeutics 2019; 196: 79-90
- 70 Logan CY, Nusse R. THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE. Annu Rev Cell Dev Biol 2004; 20: 781-810
- 71 Du Y, Ling J, Wei X. et al. Wnt/β-Catenin Signaling Participates in Cementoblast/Osteoblast Differentiation of Dental Follicle Cells. Connective Tissue Research 2012; 53: 390-397
- 72 Ge M, Zhou C, Li H. et al. Lithium chloride attenuates suppressed differentiation induced by mechanical strain in cementoblasts. Connective Tissue Research 2019; 60: 444-451
- 73 Chen J, Lan Y, Baek J-A. et al. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Developmental Biology 2009; 334: 174-185
- 74 Bain G, Müller T, Wang X. et al. Activated β-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochemical and Biophysical Research Communications 2003; 301: 84-91
- 75 Lim WH, Liu B, Hunter DJ. et al. Downregulation of Wnt causes root resorption. American Journal of Orthodontics and Dentofacial Orthopedics 2014; 146: 337-345
- 76 Shuqin L, Shan Y, Aishu R. et al. Investigation of Wnt/β-catenin signaling pathway on regulation of Runx2 in cementoblasts under mechanical stress in vitro. Hua Xi Kou Qiang Yi Xue Za Zhi 2015; 33: 35-39
- 77 Warboys CM. Mechanoactivation of Wnt/β-catenin pathways in health and disease. Emerging Topics in Life Sciences 2018; 2: 701-712
- 78 Yang X, Wang Y, Han X. et al. Effects of TGF- β 1 on OPG/RANKL Expression of Cementoblasts and Osteoblasts Are Similar without Stress but Different with Mechanical Compressive Stress. The Scientific World Journal 2015; 2015: 1-12
- 79 Hasegawa T, Yoshimura Y, Kikuiri T. et al. Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res 2002; 37: 405-411
- 80 Tyrovola JB, Odont X. The “Mechanostat Theory” of Frost and the OPG/RANKL/RANK System: T he “M echanostat ” A nd t he OPG/RANKL/RANK. J Cell Biochem 2015; 116: 2724-2729
- 81 Zhou JP, Feng G, Zhou WW. et al. Expression of osteoprotegerin and receptor activator of nuclear factor κB ligand in root resorption induced by heavy force in rats. J Orofac Orthop 2011; 72: 457-468
- 82 Azraq I, Craveiro RB, Niederau C. et al. Gene expression and phosphorylation of ERK and AKT are regulated depending on mechanical force and cell confluence in murine cementoblasts. Annals of Anatomy – Anatomischer Anzeiger 2021; 234: 151668
- 83 Minato Y, Yamaguchi M, Shimizu M. et al. Effect of caspases and RANKL induced by heavy force in orthodontic root resorption. Korean J Orthod 2018; 48: 253
- 84 Xie Y, Shen G. Combined effects of fibroblast growth factor 2 and dexamethasone on differentiation of human cementoblasts. Int J Clin Exp Pathol 2018; 11: 1415-1422