Subscribe to RSS
DOI: 10.1055/a-1821-2481
Training unter künstlicher Schwerkraft zum Erhalt der körperlichen Leistungsfähigkeit im All
Training in Artificial Gravity to maintain physical performance in microgravity
ZUSAMMENFASSUNG
Langzeitaufenthalte im All führen zu einer signifikanten Verringerung der Leistungsfähigkeit des Herz-Kreislauf-Systems sowie zum Verlust von Muskelmasse und Knochendichte. Tägliches intensives Training in Schwerelosigkeit kann diese Prozesse abschwächen aber nicht vollständig verhindern. Zukünftige Langzeitmissionen sowie Reisen zum Mond oder Mars brauchen daher effektivere Gegenmaßnahmen, um die Leistungsfähigkeit der Besatzung aufrechtzuerhalten. Das DLR forscht dazu mithilfe einer Humanzentrifuge an neuartigen Trainingsmöglichkeiten unter künstlicher Schwerkraft. Aktuelle Studien zeigen eine gute Tolerierbarkeit von verschiedenen Ausdauer- und Krafttrainingsübungen auf der Humanzentrifuge, welche als potenzielle neue Trainingsmethoden im All auch als Gegenmaßnahmen in Bettruhestudien weiterentwickelt und getestet werden.
ABSTRACT
Long-term manned spaceflight missions lead to a significant reduction in the performance of the cardiovascular system and loss of muscle mass and bone density. Daily exercise training in weightlessness can mitigate but not completely prevent deconditioning. Future long-duration missions and voyages to the Moon or Mars therefore need more effective countermeasures to maintain crew’s physical performance. Using a human centrifuge, DLR is investigating new training modalities under artificial gravity. Current studies show a good tolerability of endurance and strength exercises during rotation on the centrifuge, which will be further developed and tested as a potential countermeasure also in the context of ESA bed rest studies.
Key words
exercise - human centrifuge - artificial gravity - motion sickness - astronaut - countermeasurePublication History
Article published online:
21 June 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Clément G. Fundamentals of space medicine. 2nd ed. Space Technology Library, Vol. 23: Springer 2011
- 2 Buckey JC. Space Physiology. Oxford University Press 2006
- 3 Lang T, Van Loon JJWA, Bloomfield S. et al Towards human exploration of space: the THESEUS review series on muscle and bone research priorities. NPJ Microgravity 2017; 03: 8
- 4 LeBlanc AD, Spector ER, Evans HJ. et al Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 2007; 07: 33-47 PMID: 17396004
- 5 Stenger MB, Tarver WJ. Evidence Report: Risk of Spaceflight Associated Neuro-ocular Syndrome (SANS). National Aeronautics and Space Administration 2017
- 6 Lee AG, Mader TH, Gibson CR. et al Space flight-associated neuro-ocular syndrome (SANS). Eye (Lond) 2018; 32: 1164-1167
- 7 Stavnichuk M, Nikolajewicz N, Corlett T. et al A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity 2020; 06: 13
- 8 Petersen N, Jaekel P, Rosenberger A. et al Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS. Extrem Physiol Med 2016; 05: 9
- 9 Reynolds RJ. ed Beyond LEO – Human Health Issues for Deep Space Exploration. London: IntechOpen; 2020
- 10 Di Girolamo FG, Biolo G, Fiotti N. et al The Nutriss Study: A New Approach to Calibrate Diet and Exercise in Long-Term Space Missions to Maintain Body Fat, Muscle and Fluid Homeostasis. Aerotecnica Missili & Spazio 2020; 99: 121-125
- 11 Bosutti A, Salanova M, Blottner D. et al Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest. J Appl Physiol (1985) 2016; 121: 838-848
- 12 Trappe TA, Burd NA, Louis ES. et al Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women. Acta Physiol (Oxf) 2007; 191: 147-159
- 13 Gao R, Chilibeck PD. Nutritional interventions during bed rest and spaceflight: prevention of muscle mass and strength loss, bone resorption, glucose intolerance, and cardiovascular problems. Nutr Res 2020; 82: 11-24
- 14 Stein TP, Blanc S. Does protein supplementation prevent muscle disuse atrophy and loss of strength?. Crit Rev Food Sci Nutr 2011; 51: 828-834
- 15 Leblanc A, Matsumoto T, Jones J. et al Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int 2013; 24: 2105-2114
- 16 Ploutz-Snyder L, Bloomfield S, Smith SM. et al Effects of sex and gender on adaptation to space: musculoskeletal health. J Womens Health (Larchmt) 2014; 23: 963-966
- 17 Frett T, Green DA, Mulder E. et al Tolerability of daily intermittent or continuous short-arm centrifugation during 60-day 6o head down bed rest (AGBRESA study). PLoS One 2020; 15: e0239228
- 18 Kramer A, Venegas-Carro M, Mulder E. et al Cardiorespiratory and Neuromuscular Demand of Daily Centrifugation: Results From the 60-Day AGBRESA Bed Rest Study. Front Physiol 2020; 11: 562377
- 19 Hoffmann F, Rabineau J, Mehrkens D. et al Cardiac adaptations to 60 day head-down-tilt bed rest deconditioning. Findings from the AGBRESA study. ESC Heart Fail 2021; 08: 729-744
- 20 Kramer A, Kümmel J, Dreiner M. et al Adaptability of a jump movement pattern to a non-constant force field elicited via centrifugation. PLoS One 2020; 15: e0230854
- 21 Frett T, Green DA, Arz M. et al Motion sickness symptoms during jumping exercise on a short-arm centrifuge. PLoS One 2020; 15: e0234361
- 22 Piotrowski T, Rittweger J, Zange J. A Comparison of Squatting Exercise on a Centrifuge and With Earth Gravity. Front Physiol 2018; 09: 1759