CC BY-NC-ND 4.0 · Planta Medica International Open 2022; 9(01): e116-e122
DOI: 10.1055/a-1809-7862
Original Papers

Studies of the Major Gene Expression and Related Metabolites in Cannabinoids Biosynthesis Pathway Influenced by Ascorbic Acid

Keyvan Soltan
1   Faculty of Agricultural Science and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, Iran
,
Behnoush Dadkhah
2   Department of Biology, Georgia State University, Atlanta, GA, USA
› Author Affiliations

Abstract

Cannabis sativa L. is an annual dioecious plant that belongs to the Cannabaceae family and is essential for different pharmaceutical and nutritional properties. The most important and prevalent cannabinoids in cannabis are cannabidiol and delta-9-tetrahydrocannabinol. The application of elicitors is an effective method to improve secondary metabolite production, leading to a whole spectrum of molecular, genetic, and physiological modifications. Therefore, the expression changes of four key genes (THCAS, CBDAS, PT, and OLS) of the cannabinoids pathway along with the delta-9-tetrahydrocannabinol and cannabidiol metabolites fluctuation were surveyed following the application of ascorbic acid as an elicitor. Cannabis was sprayed immediately before flowering with ascorbic acid. Treated and untreated (control) plants were sampled in different time courses for real-time PCR and HPLC experiments. Results showed significant increases in THCAS, CBDAS, PT, and OLS expression after ascorbic acid treatments. The results of metabolite quantification also indicated that secondary metabolites, especially delta-9-tetrahydrocannabinol and cannabidiol, increased after the ascorbic acid application. This study contributes to the growing body of knowledge of the functions of key genes in the cannabinoids pathway to the engineering of cannabis for improving the production of delta-9-tetrahydrocannabinol and cannabidiol metabolites in this plant.

Supplementary Material



Publication History

Received: 17 October 2021
Received: 06 February 2022

Accepted: 25 March 2022

Article published online:
30 May 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany