J Neurol Surg B Skull Base 2023; 84(03): 296-306
DOI: 10.1055/a-1808-1359
Original Article

Endoscopic Endonasal Approach to the Third Ventricle Using the Surgical Corridor of the Reverse Third Ventriculostomy: Anatomo-Surgical Nuances

Ali Karadag
1   Department of Neurosurgery, Health Science University, Tepecik Research and Training Hospital, Izmir, Turkey
2   Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University–Cerrahpasa, Istanbul, Turkey
,
Mahmut Camlar
1   Department of Neurosurgery, Health Science University, Tepecik Research and Training Hospital, Izmir, Turkey
,
Omer Furkan Turkis
2   Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University–Cerrahpasa, Istanbul, Turkey
3   Department of Neurosurgery, Health Science University, Van Research and Training Hospital, Van, Turkey
,
Nijat Bayramli
1   Department of Neurosurgery, Health Science University, Tepecik Research and Training Hospital, Izmir, Turkey
2   Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University–Cerrahpasa, Istanbul, Turkey
,
Erik H. Middlebrooks
4   Departments of Neurosurgery and Radiology, Mayo Clinic, Jacksonville, Florida, United States
,
Necmettin Tanriover
2   Microsurgical Neuroanatomy Laboratory, Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University–Cerrahpasa, Istanbul, Turkey
5   Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University–Cerrahpasa, Istanbul, Turkey
› Author Affiliations

Abstract

Objective Surgical access to the third ventricle can be achieved through various corridors depending on the location and extent of the lesion; however, traditional transcranial approaches risk damage to multiple critical neural structures.

Methods Endonasal approach similar to corridor of the reverse third ventriculostomy (ERTV) was surgically simulated in eight cadaveric heads. Fiber dissections were additionally performed within the third ventricle along the endoscopic route. Additionally, we present a case of ERTV in a patient with craniopharyngioma extending into the third ventricle.

Results The ERTV allowed adequate intraventricular visualization along the third ventricle. The extracranial step of the surgical corridor included a bony window in the sellar floor, tuberculum sella, and the lower part of the planum sphenoidale. ERTV provided an intraventricular surgical field along the foramen of Monro to expose an area bordered by the fornix anteriorly, thalamus laterally, anterior commissure anterior superiorly, posterior commissure, habenula and pineal gland posteriorly, and aqueduct of Sylvius centered posterior inferiorly.

Conclusion The third ventricle can safely be accessed through ERTV either above or below the pituitary gland. ERTV provides a wide exposure of the third ventricle through the tuber cinereum and offers access to the anterior part as far as the anterior commissure and precommissural part of fornix and the whole length of the posterior part. Endoscopic ERTV may be a suitable alternative to transcranial approaches to access the third ventricle in selected patients.



Publication History

Received: 10 October 2021

Accepted: 18 March 2022

Accepted Manuscript online:
24 March 2022

Article published online:
06 July 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Yamamoto I, Rhoton Jr AL, Peace DA. Microsurgery of the third ventricle: part I. Microsurgical anatomy. Neurosurgery 1981; 8 (03) 334-356
  • 2 Apuzzo M. Radiology of Third Ventricular Lesions. In: Thomas CC. ed. Surgery of the third ventricle.. Baltimore: Williams & Wilkins; 1987: 268-272
  • 3 Rhoton Jr AL, Yamamoto I, Peace DA. Microsurgery of the third ventricle: part 2. Operative approaches. Neurosurgery 1981; 8 (03) 357-373
  • 4 Silveira-Bertazzo G, Manjila S, Carrau RL, Prevedello DM. Expanded endoscopic endonasal approach for extending suprasellar and third ventricular lesions. Acta Neurochir (Wien) 2020; 162 (10) 2403-2408
  • 5 Ludwig E, Klingler J. Atlas Cerebri Humani. Basel: S. Karger; 1956
  • 6 Horn A, Li N, Dembek TA. et al. Lead-DBS v2: towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 2019; 184: 293-316
  • 7 Neudorfer C, Germann J, Elias GJB, Gramer R, Boutet A, Lozano AM. A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region. Sci Data 2020; 7 (01) 305
  • 8 Cartmell SC, Tian Q, Thio BJ. et al. Multimodal characterization of the human nucleus accumbens. Neuroimage 2019; 198: 137-149
  • 9 Brown CA, Johnson NF, Anderson-Mooney AJ. et al. Development, validation and application of a new fornix template for studies of aging and preclinical Alzheimer's disease. Neuroimage Clin 2016; 13: 106-115
  • 10 Edlow BL, Mareyam A, Horn A. et al. 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Sci Data 2019; 6 (01) 244
  • 11 Kim MH, Jho HD. Endoscopic reverse third ventriculostomy via the cisterna magna: anatomical study and proposal of a novel procedure. Minim Invasive Neurosurg 2002; 45 (02) 84-86
  • 12 Almeida JP, Suppiah S, Karekezi C. et al. Extended endoscopic approach for resection of craniopharyngiomas. J Neurol Surg B Skull Base 2018; 79 (02) S201-S202
  • 13 Abbott R. History of neuroendoscopy. Neurosurg Clin N Am 2004; 15 (01) 1-7
  • 14 Grant JA. Victor Darwin Lespinasse: a biographical sketch. Neurosurgery 1996; 39 (06) 1232-1233
  • 15 Cohen-Gadol AA, Geryk B, Binder DK, Tubbs RS. Conquering the third ventricular chamber. J Neurosurg 2009; 111 (03) 590-599
  • 16 Dandy WE. enign Tumors in the Third Ventricle of the Brain: Diagnosis and Treatment. In: Thomas CC, ed. Illionis. Springfield; 1933: S171-171
  • 17 Abosch AMM, Wilson CB. Lateral ventricular tumors. In: Kaye AH BP, ed. Operative Neurosurgery. New York: Churchill Livingstone; 2000: 799-812
  • 18 Gaab MR, Schroeder HW. Neuroendoscopic approach to intraventricular lesions. J Neurosurg 1998; 88 (03) 496-505
  • 19 Liu JK, Christiano LD, Gupta G, Carmel PW. Surgical nuances for removal of retrochiasmatic craniopharyngiomas via the transbasal subfrontal translamina terminalis approach. Neurosurg Focus 2010; 28 (04) E6
  • 20 Maira G, Anile C, Colosimo C, Cabezas D. Craniopharyngiomas of the third ventricle: trans-lamina terminalis approach. Neurosurgery 2000; 47 (04) 857-863 , discussion 863–865
  • 21 Silva PS, Cerejo A, Polónia P, Pereira J, Vaz R. Trans-lamina terminalis approach for third ventricle and suprasellar tumours. Clin Neurol Neurosurg 2013; 115 (09) 1745-1752
  • 22 Türe U, Yaşargil MG, Al-Mefty O. The transcallosal-transforaminal approach to the third ventricle with regard to the venous variations in this region. J Neurosurg 1997; 87 (05) 706-715
  • 23 Ulm AJ, Russo A, Albanese E. et al. Limitations of the transcallosal transchoroidal approach to the third ventricle. J Neurosurg 2009; 111 (03) 600-609
  • 24 Cardia A, Caroli M, Pluderi M. et al. Endoscope-assisted infratentorial-supracerebellar approach to the third ventricle: an anatomical study. J Neurosurg 2006; 104 (6, Suppl): 409-414
  • 25 Chibbaro S, Di Rocco F, Makiese O. et al. Neuroendoscopic management of posterior third ventricle and pineal region tumors: technique, limitation, and possible complication avoidance. Neurosurg Rev 2012; 35 (03) 331-338 , discussion 338–340
  • 26 Shiramizu H, Hori T, Matsuo S. et al. Anterior callosal section is useful for the removal of large tumors invading the dorsal part of the anterior third ventricle: operative technique and results. Neurosurg Rev 2013; 36 (03) 467-475
  • 27 Cavallo LM, Prevedello DM, Solari D. et al. Extended endoscopic endonasal transsphenoidal approach for residual or recurrent craniopharyngiomas. J Neurosurg 2009; 111 (03) 578-589
  • 28 Cavallo LM, de Divitiis O, Aydin S. et al. Extended endoscopic endonasal transsphenoidal approach to the suprasellar area: anatomic considerations—part 1. Operative Neurosurgery 2007; 61: ONS-24-ONS-34
  • 29 Frank G, Sciarretta V, Calbucci F, Farneti G, Mazzatenta D, Pasquini E. The endoscopic transnasal transsphenoidal approach for the treatment of cranial base chordomas and chondrosarcomas. Neurosurgery 2006;59 (1, Suppl 1):ONS50–ONS57, discussion ONS50–ONS57
  • 30 Gardner PA, Kassam AB, Snyderman CH. et al. Outcomes following endoscopic, expanded endonasal resection of suprasellar craniopharyngiomas: a case series. J Neurosurg 2008; 109 (01) 6-16
  • 31 Apuzzo ML, Chikovani OK, Gott PS. et al. Transcallosal, interfornicial approaches for lesions affecting the third ventricle: surgical considerations and consequences. Neurosurgery 1982; 10 (05) 547-554
  • 32 Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 1999; 22 (03) 425-444 , discussion 444–489
  • 33 Konovalov AN, Gorelyshev SK. Surgical treatment of anterior third ventricle tumours. Acta Neurochir (Wien) 1992; 118 (1-2): 33-39
  • 34 Naidich TP, Daniels DL, Pech P, Haughton VM, Williams A, Pojunas K. Anterior commissure: anatomic-MR correlation and use as a landmark in three orthogonal planes. Radiology 1986; 158 (02) 421-429
  • 35 Peltier B. The Psychology of Executive Coaching: Theory and Application. New York: Taylor & Francis; 2011
  • 36 Botez-Marquard T, Botez MI. Visual memory deficits after damage to the anterior commissure and right fornix. Arch Neurol 1992; 49 (03) 321-324
  • 37 Allen LS, Gorski RA. Sexual orientation and the size of the anterior commissure in the human brain. Proc Natl Acad Sci U S A 1992; 89 (15) 7199-7202
  • 38 Vertes RP, Albo Z, Viana Di Prisco G. Theta-rhythmically firing neurons in the anterior thalamus: implications for mnemonic functions of Papez's circuit. Neuroscience 2001; 104 (03) 619-625
  • 39 Thomas AG, Koumellis P, Dineen RA. The fornix in health and disease: an imaging review. Radiographics 2011; 31 (04) 1107-1121
  • 40 Copenhaver BR, Rabin LA, Saykin AJ. et al. The fornix and mammillary bodies in older adults with Alzheimer's disease, mild cognitive impairment, and cognitive complaints: a volumetric MRI study. Psychiatry Res 2006; 147 (2-3): 93-103
  • 41 Cacciola A, Milardi D, Calamuneri A. et al. Constrained spherical deconvolution tractography reveals cerebello-mammillary connections in humans. Cerebellum 2017; 16 (02) 483-495
  • 42 Bear MH, Reddy V, Bollu PC. Neuroanatomy, Hypothalamus. Treasure Island (FL): StatPearls [Internet]; 2020
  • 43 Kwon HG, Lee HD, Jang SH. Injury of the mammillothalamic tract in patients with thalamic hemorrhage. Front Hum Neurosci 2014; 8: 259
  • 44 Hori T, Kawamata T, Amano K, Aihara Y, Ono M, Miki N. Anterior interhemispheric approach for 100 tumors in and around the anterior third ventricle. Neurosurgery 2010; 66 (3, Suppl Operative): 65-74
  • 45 Pergola G, Güntürkün O, Koch B, Schwarz M, Daum I, Suchan B. Recall deficits in stroke patients with thalamic lesions covary with damage to the parvocellular mediodorsal nucleus of the thalamus. Neuropsychologia 2012; 50 (10) 2477-2491
  • 46 Metzler-Baddeley C, Jones DK, Belaroussi B, Aggleton JP, O'Sullivan MJ. Frontotemporal connections in episodic memory and aging: a diffusion MRI tractography study. J Neurosci 2011; 31 (37) 13236-13245
  • 47 Ghika-Schmid F, Bogousslavsky J. The acute behavioral syndrome of anterior thalamic infarction: a prospective study of 12 cases. Ann Neurol 2000; 48 (02) 220-227
  • 48 Asa SL, Ezzat S. An Update on Pituitary Neuroendocrine Tumors Leading to Acromegaly and Gigantism. J Clin Med. 2021;10(11)
  • 49 Carmichael J.D., Braunstein G.D.. Diseases of Hypothalamic Origin. In D. W. Pfaff, A. P. Arnold & R. T. Rubin (Eds.), Hormones, Brain and Behavior 2009; 3005-3048
  • 50 Nishioka H, Fukuhara N, Yamaguchi-Okada M, Yamada S. Endoscopic endonasal surgery for purely intrathird ventricle craniopharyngioma. World Neurosurg 2016; 91: 266-271
  • 51 Fomichev D, Kalinin P, Kutin M, Sharipov O. Extended transsphenoidal endoscopic endonasal surgery of suprasellar craniopharyngiomas. World Neurosurg 2016; 94: 181-187