RSS-Feed abonnieren
DOI: 10.1055/a-1800-8789
Practical Aspects of novel MRI Techniques in Neuroradiology: Part 2 – Acceleration Methods and Implications for Individual Regions
Artikel in mehreren Sprachen: English | deutsch
Abstract
Background Recently introduced MRI techniques facilitate accelerated examinations or increased resolution with the same duration. Further techniques offer homogeneous image quality in regions with anatomical transitions. The question arises whether and how these techniques can be adopted for routine diagnostic imaging.
Methods Narrative review with an educational focus based on current literature research and practical experiences of different professions involved (physicians, MRI technologists/radiographers, physics/biomedical engineering). Different hardware manufacturers are considered.
Results and Conclusions Compressed sensing and simultaneous multi-slice imaging are novel acceleration techniques with different yet complimentary applications. They do not suffer from classical signal-to-noise-ratio penalties. Combining 3 D and acceleration techniques facilitates new broader examination protocols, particularly for clinical brain imaging. In further regions of the nervous systems mainly specific applications appear to benefit from recent technological improvements.
Key points:
-
New acceleration techniques allow for faster or higher resolution examinations.
-
New brain imaging approaches have evolved, including more universal examination protocols.
-
Other regions of the nervous system are dominated by targeted applications of recently introduced MRI techniques.
Citation Format
-
Sundermann B, Billebaut B, Bauer J et al. Practical Aspects of novel MRI Techniques in Neuroradiology: Part 2 – Acceleration Methods and Implications for Individual Regions. Fortschr Röntgenstr 2022; 194: 1195 – 1203
Key words
MR-imaging - neuroradiology - compressed sensing - simultaneous multi-slice - MRI protocolsPublikationsverlauf
Eingereicht: 31. August 2021
Angenommen: 05. März 2022
Artikel online veröffentlicht:
07. Juli 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Aja-Fernandez S, Vegas-Sanchez-Ferrero G, Tristan-Vega A. Noise estimation in parallel MRI: GRAPPA and SENSE. Magn Reson Imaging 2014; 32: 281-290
- 2 Barth M, Breuer F, Koopmans PJ. et al. Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 2016; 75: 63-81
- 3 Setsompop K, Gagoski BA, Polimeni JR. et al. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012; 67: 1210-1224
- 4 McRobbie DW, Moore EA, Graves MJ. MRI from picture to proton. 3 Aufl.. New York: University Printing House, Cambridge University Press; 2017
- 5 Risk BB, Kociuba MC, Rowe DB. Impacts of simultaneous multislice acquisition on sensitivity and specificity in fMRI. Neuroimage 2018; 172: 538-553
- 6 Hsu YC, Chu YH, Tsai SY. et al. Simultaneous multi-slice inverse imaging of the human brain. Sci Rep 2017; 7: 17019
- 7 Park S, Chen L, Beckett A. et al. Virtual slice concept for improved simultaneous multi-slice MRI employing an extended leakage constraint. Magn Reson Med 2019; 82: 377-386
- 8 Xu J, Moeller S, Auerbach EJ. et al. Evaluation of slice accelerations using multiband echo planar imaging at 3 T. Neuroimage 2013; 83: 991-1001
- 9 Setsompop K, Cohen-Adad J, Gagoski BA. et al. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 2012; 63: 569-580
- 10 Todd N, Moeller S, Auerbach EJ. et al. Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts. Neuroimage 2016; 124: 32-42
- 11 Miller KL, Alfaro-Almagro F, Bangerter NK. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci 2016; 19: 1523-1536
- 12 Smith SM, Beckmann CF, Andersson J. et al. Resting-state fMRI in the Human Connectome Project. Neuroimage 2013; 80: 144-168
- 13 Fritz J, Fritz B, Zhang J. et al. Simultaneous Multislice Accelerated Turbo Spin Echo Magnetic Resonance Imaging: Comparison and Combination With In-Plane Parallel Imaging Acceleration for High-Resolution Magnetic Resonance Imaging of the Knee. Invest Radiol 2017; 52: 529-537
- 14 Monch S, Sollmann N, Hock A. et al. Magnetic Resonance Imaging of the Brain Using Compressed Sensing – Quality Assessment in Daily Clinical Routine. Clin Neuroradiol 2020; 30: 279-286
- 15 Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182-1195
- 16 Geethanath S, Reddy R, Konar AS. et al. Compressed sensing MRI: a review. Crit Rev Biomed Eng 2013; 41: 183-204
- 17 Kayvanrad M, Lin A, Joshi R. et al. Diagnostic quality assessment of compressed sensing accelerated magnetic resonance neuroimaging. J Magn Reson Imaging 2016; 44: 433-444
- 18 Vranic JE, Cross NM, Wang Y. et al. Compressed Sensing-Sensitivity Encoding (CS-SENSE) Accelerated Brain Imaging: Reduced Scan Time without Reduced Image Quality. AJNR Am J Neuroradiol 2019; 40: 92-98
- 19 Lu SS, Qi M, Zhang X. et al. Clinical Evaluation of Highly Accelerated Compressed Sensing Time-of-Flight MR Angiography for Intracranial Arterial Stenosis. AJNR Am J Neuroradiol 2018; 39: 1833-1838
- 20 Yamamoto T, Okada T, Fushimi Y. et al. Magnetic resonance angiography with compressed sensing: An evaluation of moyamoya disease. PLoS One 2018; 13: e0189493
- 21 Fushimi Y, Fujimoto K, Okada T. et al. Compressed Sensing 3-Dimensional Time-of-Flight Magnetic Resonance Angiography for Cerebral Aneurysms: Optimization and Evaluation. Invest Radiol 2016; 51: 228-235
- 22 Fushimi Y, Okada T, Kikuchi T. et al. Clinical evaluation of time-of-flight MR angiography with sparse undersampling and iterative reconstruction for cerebral aneurysms. NMR Biomed 2017; 30
- 23 Toledano-Massiah S, Sayadi A, de Boer R. et al. Accuracy of the Compressed Sensing Accelerated 3D-FLAIR Sequence for the Detection of MS Plaques at 3T. AJNR Am J Neuroradiol 2018; 39: 454-458
- 24 Delattre BMA, Boudabbous S, Hansen C. et al. Compressed sensing MRI of different organs: ready for clinical daily practice?. Eur Radiol 2020; 30: 308-319
- 25 Feng L, Benkert T, Block KT. et al. Compressed sensing for body MRI. J Magn Reson Imaging 2017; 45: 966-987
- 26 Sharma SD, Fong CL, Tzung BS. et al. Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing. Invest Radiol 2013; 48: 638-645
- 27 Sartoretti T, Reischauer C, Sartoretti E. et al. Common artefacts encountered on images acquired with combined compressed sensing and SENSE. Insights Imaging 2018; 9: 1107-1115
- 28 Renard D, Delorme M, Castelnovo G. Hyperintense intramural hematoma on time-of-flight sequences in carotid dissection. Eur Neurol 2013; 70: 141
- 29 Viallon M, Cuvinciuc V, Delattre B. et al. State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications. Neuroradiology 2015; 57: 441-467
- 30 Villanueva-Meyer JE, Mabray MC, Cha S. Current Clinical Brain Tumor Imaging. Neurosurgery 2017; 81: 397-415
- 31 Martin AR, Aleksanderek I, Cohen-Adad J. et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin 2016; 10: 192-238
- 32 Christen T, Bolar DS, Zaharchuk G. Imaging brain oxygenation with MRI using blood oxygenation approaches: methods, validation, and clinical applications. AJNR Am J Neuroradiol 2013; 34: 1113-1123
- 33 Ji S, Yang D, Lee J. et al. Synthetic MRI: Technologies and Applications in Neuroradiology. J Magn Reson Imaging 2020;
- 34 Hagiwara A, Warntjes M, Hori M. et al. SyMRI of the Brain: Rapid Quantification of Relaxation Rates and Proton Density, With Synthetic MRI, Automatic Brain Segmentation, and Myelin Measurement. Invest Radiol 2017; 52: 647-657
- 35 Lin DJ, Johnson PM, Knoll F. et al. Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. J Magn Reson Imaging 2021; 53: 1015-1028
- 36 Poorman ME, Martin MN, Ma D. et al. Magnetic resonance fingerprinting Part 1: Potenzial uses, current challenges, and recommendations. J Magn Reson Imaging 2020; 51: 675-692
- 37 McGivney DF, Boyacioglu R, Jiang Y. et al. Magnetic resonance fingerprinting review part 2: Technique and directions. J Magn Reson Imaging 2020; 51: 993-1007
- 38 Rovira A, Wattjes MP, Tintore M. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol 2015; 11: 471-482
- 39 Filippi M, Preziosa P, Banwell BL. et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 2019; 142: 1858-1875
- 40 Traboulsee A, Simon JH, Stone L. et al. Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 2016; 37: 394-401
- 41 Wang KY, Uribe TA, Lincoln CM. Comparing lesion detection of infratentorial multiple sclerosis lesions between T2-weighted spin-echo, 2D-FLAIR, and 3D-FLAIR sequences. Clin Imaging 2018; 51: 229-234
- 42 Lecler A, El Sanharawi I, El Methni J. et al. Improving Detection of Multiple Sclerosis Lesions in the Posterior Fossa Using an Optimized 3D-FLAIR Sequence at 3T. AJNR Am J Neuroradiol 2019; 40: 1170-1176
- 43 Tomassini V, Sinclair A, Sawlani V. et al. Diagnosis and management of multiple sclerosis: MRI in clinical practice. J Neurol 2020; 267: 2917-2925
- 44 Sollmann N, Gutbrod-Fernandez M, Burian E. et al. Subtraction Maps Derived from Longitudinal Magnetic Resonance Imaging in Patients with Glioma Facilitate Early Detection of Tumor Progression. Cancers (Basel) 2020; 12
- 45 Huber T, Alber G, Bette S. et al. Reliability of Semi-Automated Segmentations in Glioblastoma. Clin Neuroradiol 2017; 27: 153-161
- 46 Mellerio C, Labeyrie MA, Chassoux F. et al. Optimizing MR imaging detection of type 2 focal cortical dysplasia: best criteria for clinical practice. AJNR Am J Neuroradiol 2012; 33: 1932-1938
- 47 Urbach H, Mast H, Egger K. et al. Presurgical MR Imaging in Epilepsy. Clin Neuroradiol 2015; 25 (Suppl. 02) 151-155
- 48 Saini J, Singh A, Kesavadas C. et al. Role of three-dimensional fluid-attenuated inversion recovery (3D FLAIR) and proton density magnetic resonance imaging for the detection and evaluation of lesion extent of focal cortical dysplasia in patients with refractory epilepsy. Acta Radiol 2010; 51: 218-225
- 49 Tschampa HJ, Urbach H, Malter M. et al. Magnetic resonance imaging of focal cortical dysplasia: Comparison of 3D and 2D fluid attenuated inversion recovery sequences at 3T. Epilepsy Res 2015; 116: 8-14
- 50 Lummel N, Schoepf V, Burke M. et al. 3D fluid-attenuated inversion recovery imaging: reduced CSF artifacts and enhanced sensitivity and specificity for subarachnoid hemorrhage. AJNR Am J Neuroradiol 2011; 32: 2054-2060
- 51 Algin O, Turkbey B. Evaluation of aqueductal stenosis by 3D sampling perfection with application-optimized contrasts using different flip angle evolutions sequence: preliminary results with 3T MR imaging. AJNR Am J Neuroradiol 2012; 33: 740-746
- 52 Wenger KJ, Hattingen E. Schnelle MRT-Sequenzen für die akute neurologische Abklärung. Der Radiologe 2020; 60: 208-215
- 53 Ellingson BM, Bendszus M, Boxerman J. et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 2015; 17: 1188-1198
- 54 Kaufmann TJ, Smits M, Boxerman J. et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol 2020; 22: 757-772
- 55 Eiden S, Beck C, Venhoff N. et al. High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: Prospective comparison of whole-brain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla. PLoS One 2019; 14: e0213514
- 56 Zeiler SR, Qiao Y, Pardo CA. et al. Vessel Wall MRI for Targeting Biopsies of Intracranial Vasculitis. AJNR Am J Neuroradiol 2018; 39: 2034-2036
- 57 Poillon G, Collin A, Benhamou Y. et al. Increased diagnostic accuracy of giant cell arteritis using three-dimensional fat-saturated contrast-enhanced vessel-wall magnetic resonance imaging at 3 T. Eur Radiol 2020; 30: 1866-1875
- 58 Wang LJ, Kong DZ, Guo ZN. et al. Study on the Clinical, Imaging, and Pathological Characteristics of 18 Cases with Primary Central Nervous System Vasculitis. J Stroke Cerebrovasc Dis 2019; 28: 920-928
- 59 Lindenholz A, van der Kolk AG, Zwanenburg JJM. et al. The Use and Pitfalls of Intracranial Vessel Wall Imaging: How We Do It. Radiology 2018; 286: 12-28
- 60 Lindenholz A, van der Schaaf IC, van der Kolk AG. et al. MRI Vessel Wall Imaging after Intra-Arterial Treatment for Acute Ischemic Stroke. AJNR Am J Neuroradiol 2020; 41: 624-631
- 61 Mossa-Basha M, Watase H, Sun J. et al. Inter-rater and scan-rescan reproducibility of the detection of intracranial atherosclerosis on contrast-enhanced 3D vessel wall MRI. Br J Radiol 2019; 92: 20180973
- 62 Luo Y, Guo ZN, Niu PP. et al. 3D T1-weighted black blood sequence at 3.0 Tesla for the diagnosis of cervical artery dissection. Stroke Vasc Neurol 2016; 1: 140-146
- 63 Takano K, Yamashita S, Takemoto K. et al. MRI of intracranial vertebral artery dissection: evaluation of intramural haematoma using a black blood, variable-flip-angle 3D turbo spin-echo sequence. Neuroradiology 2013; 55: 845-851
- 64 Edjlali M, Roca P, Rabrait C. et al. 3D fast spin-echo T1 black-blood imaging for the diagnosis of cervical artery dissection. AJNR Am J Neuroradiol 2013; 34: E103-E106
- 65 Ogawa M, Omata S, Kan H. et al. Utility of the variable flip angle 3D fast-spin echo (isoFSE) sequence on 3T MR for diagnosing vertebrobasilar artery dissection. Radiol Phys Technol 2018; 11: 228-234
- 66 Sakurai K, Miura T, Sagisaka T. et al. Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA) sequence: a preliminary study. J Neuroradiol 2013; 40: 19-28
- 67 Gaddikeri S, Mossa-Basha M, Andre JB. et al. Optimal Fat Suppression in Head and Neck MRI: Comparison of Multipoint Dixon with 2 Different Fat-Suppression Techniques, Spectral Presaturation and Inversion Recovery, and STIR. AJNR Am J Neuroradiol 2018; 39: 362-368
- 68 Wang X, Harrison C, Mariappan YK. et al. MR Neurography of Brachial Plexus at 3.0 T with Robust Fat and Blood Suppression. Radiology 2017; 283: 538-546
- 69 Berg S, Kaschka I, Utz KS. et al. Baseline magnetic resonance imaging of the optic nerve provides limited predictive information on short-term recovery after acute optic neuritis. PLoS One 2015; 10: e0113961
- 70 Wu X, Raz E, Block TK. et al. Contrast-enhanced radial 3D fat-suppressed T1-weighted gradient-recalled echo sequence versus conventional fat-suppressed contrast-enhanced T1-weighted studies of the head and neck. Am J Roentgenol 2014; 203: 883-889
- 71 Bangiyev L, Raz E, Block TK. et al. Evaluation of the orbit using contrast-enhanced radial 3D fat-suppressed T1 weighted gradient echo (Radial-VIBE) sequence. Br J Radiol 2015; 88: 20140863
- 72 Ciftci E, Anik Y, Arslan A. et al. Driven equilibrium (drive) MR imaging of the cranial nerves V-VIII: comparison with the T2-weighted 3D TSE sequence. Eur J Radiol 2004; 51: 234-240
- 73 Savvas E, Heslinga K, Sundermann B. et al. Prognostic factors in cochlear implantation in adults: Determining central process integrity. Am J Otolaryngol 2020; 41: 102435
- 74 Touska P, Connor SEJ. Recent advances in MRI of the head and neck, skull base and cranial nerves: new and evolving sequences, analyses and clinical applications. Br J Radiol 2019; 92: 20190513
- 75 Pokorney AL, Chia JM, Pfeifer CM. et al. Improved fat-suppression homogeneity with mDIXON turbo spin echo (TSE) in pediatric spine imaging at 3.0 T. Acta Radiol 2017; 58: 1386-1394
- 76 Guerini H, Omoumi P, Guichoux F. et al. Fat Suppression with Dixon Techniques in Musculoskeletal Magnetic Resonance Imaging: A Pictorial Review. Semin Musculoskelet Radiol 2015; 19: 335-347
- 77 Zanchi F, Richard R, Hussami M. et al. MRI of non-specific low back pain and/or lumbar radiculopathy: do we need T1 when using a sagittal T2-weighted Dixon sequence?. Eur Radiol 2020; 30: 2583-2593
- 78 Low RN, Austin MJ, Ma J. Fast spin-echo triple echo dixon: Initial clinical experience with a novel pulse sequence for simultaneous fat-suppressed and nonfat-suppressed T2-weighted spine magnetic resonance imaging. J Magn Reson Imaging 2011; 33: 390-400
- 79 Brandao S, Seixas D, Ayres-Basto M. et al. Comparing T1-weighted and T2-weighted three-point Dixon technique with conventional T1-weighted fat-saturation and short-tau inversion recovery (STIR) techniques for the study of the lumbar spine in a short-bore MRI machine. Clin Radiol 2013; 68: e617-e623
- 80 Maeder Y, Dunet V, Richard R. et al. Bone Marrow Metastases: T2-weighted Dixon Spin-Echo Fat Images Can Replace T1-weighted Spin-Echo Images. Radiology 2018; 286: 948-959
- 81 Chokshi FH, Sadigh G, Carpenter W. et al. Diagnostic Quality of 3D T2-SPACE Compared with T2-FSE in the Evaluation of Cervical Spine MRI Anatomy. AJNR Am J Neuroradiol 2017; 38: 846-850
- 82 Hossein J, Fariborz F, Mehrnaz R. et al. Evaluation of diagnostic value and T2-weighted three-dimensional isotropic turbo spin-echo (3D-SPACE) image quality in comparison with T2-weighted two-dimensional turbo spin-echo (2D-TSE) sequences in lumbar spine MR imaging. Eur J Radiol Open 2019; 6: 36-41
- 83 Koontz NA, Wiggins 3rd RH. et al. Less Is More: Efficacy of Rapid 3D-T2 SPACE in ED Patients with Acute Atypical Low Back Pain. Acad Radiol 2017; 24: 988-994
- 84 Sayah A, Jay AK, Toaff JS. et al. Effectiveness of a Rapid Lumbar Spine MRI Protocol Using 3D T2-Weighted SPACE Imaging Versus a Standard Protocol for Evaluation of Degenerative Changes of the Lumbar Spine. Am J Roentgenol 2016; 207: 614-620
- 85 Dobrocky T, Winklehner A, Breiding PS. et al. Spine MRI in Spontaneous Intracranial Hypotension for CSF Leak Detection: Nonsuperiority of Intrathecal Gadolinium to Heavily T2-Weighted Fat-Saturated Sequences. AJNR Am J Neuroradiol 2020; 41: 1309-1315
- 86 Vargas MI, Dietemann JL. 3D T2-SPACE versus T2-FSE or T2 Gradient Recalled-Echo: Which Is the Best Sequence?. AJNR Am J Neuroradiol 2017; 38: E48-E49
- 87 Bratke G, Rau R, Kabbasch C. et al. Speeding up the clinical routine: Compressed sensing for 2D imaging of lumbar spine disc herniation. Eur J Radiol 2021; 140: 109738
- 88 Morita K, Nakaura T, Maruyama N. et al. Hybrid of Compressed Sensing and Parallel Imaging Applied to Three-dimensional Isotropic T2-weighted Turbo Spin-echo MR Imaging of the Lumbar Spine. Magn Reson Med Sci 2020; 19: 48-55
- 89 Bratke G, Rau R, Weiss K. et al. Accelerated MRI of the Lumbar Spine Using Compressed Sensing: Quality and Efficiency. J Magn Reson Imaging 2019; 49: e164-e175
- 90 Chhabra A, Andreisek G, Soldatos T. et al. MR neurography: past, present, and future. Am J Roentgenol 2011; 197: 583-591
- 91 Klupp E, Cervantes B, Sollmann N. et al. Improved Brachial Plexus Visualization Using an Adiabatic iMSDE-Prepared STIR 3D TSE. Clin Neuroradiol 2019; 29: 631-638
- 92 Viallon M, Vargas MI, Jlassi H. et al. High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging. Eur Radiol 2008; 18: 1018-1023
- 93 Chhabra A, Thawait GK, Soldatos T. et al. High-resolution 3T MR neurography of the brachial plexus and its branches, with emphasis on 3D imaging. AJNR Am J Neuroradiol 2013; 34: 486-497
- 94 Soldatos T, Andreisek G, Thawait GK. et al. High-resolution 3-T MR neurography of the lumbosacral plexus. Radiographics 2013; 33: 967-987
- 95 Van der Cruyssen F, Croonenborghs TM, Hermans R. et al. 3D Cranial Nerve Imaging, a Novel MR Neurography Technique Using Black-Blood STIR TSE with a Pseudo Steady-State Sweep and Motion-Sensitized Driven Equilibrium Pulse for the Visualization of the Extraforaminal Cranial Nerve Branches. AJNR Am J Neuroradiol 2020;
- 96 Mugler 3rd JP. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 2014; 39: 745-767