Planta Med 2022; 88(09/10): 794-804
DOI: 10.1055/a-1797-3030
Biological and Pharmacological Activity
Original Papers

In Silico and In Vitro Approach to Assess Direct Allosteric AMPK Activators from Nature[ # ]

Benjamin Kirchweger
1   Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
2   Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
,
Andreas Wasilewicz
1   Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
2   Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
,
Katrin Fischhuber
1   Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
,
Ammar Tahir
1   Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
,
Ya Chen
1   Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
,
Elke H. Heiss
1   Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
,
Thierry Langer
1   Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
,
Johannes Kirchmair
1   Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
,
1   Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
› Author Affiliations
Supported by: Austrian Science Fund P29392
Supported by: Austrian Science Fund P34028

Abstract

The 5′-adenosine monophosphate-activated protein kinase (AMPK) is an important metabolic regulator. Its allosteric drug and metabolite binding (ADaM) site was identified as an attractive target for direct AMPK activation and holds promise as a novel mechanism for the treatment of metabolic diseases. With the exception of lusianthridin and salicylic acid, no natural product (NP) is reported so far to directly target the ADaM site. For the streamlined assessment of direct AMPK activators from the pool of NPs, an integrated workflow using in silico and in vitro methods was applied. Virtual screening combining a 3D shape-based approach and docking identified 21 NPs and NP-like molecules that could potentially activate AMPK. The compounds were purchased and tested in an in vitro AMPK α 1 β 1 γ 1 kinase assay. Two NP-like virtual hits were identified, which, at 30 µM concentration, caused a 1.65-fold (± 0.24) and a 1.58-fold (± 0.17) activation of AMPK, respectively. Intriguingly, using two different evaluation methods, we could not confirm the bioactivity of the supposed AMPK activator lusianthridin, which rebuts earlier reports.

# Dedicated to Professor Dr. A. Douglas Kinghorn on the occasion of his 75th birthday.


Supporting Information



Publication History

Received: 17 December 2021

Accepted after revision: 14 March 2022

Article published online:
01 August 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13: 1016-1023
  • 2 Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ. Structural basis of AMPK regulation by small molecule activators. Nat Commun 2013; 4: 1-10
  • 3 Esquejo RM, Salatto CT, Delmore J, Albuquerque B, Reyes A, Shi Y, Moccia R, Cokorinos E, Peloquin M, Monetti M, Barricklow J, Bollinger E, Smith BK, Day EA, Nguyen C, Geoghegan KF, Kreeger JM, Opsahl A, Ward J, Kalgutkar AS, Tess D, Butler L, Shirai N, Osborne TF, Steinberg GR, Birnbaum MJ, Cameron KO, Miller RA. Activation of liver AMPK with PF-06409577 corrects NAFLD and lowers cholesterol in rodent and primate preclinical models. EBioMedicine 2018; 31: 122-132
  • 4 Cameron KO, Kung DW, Kalgutkar AS, Kurumbail RG, Miller R, Salatto CT, Ward J, Withka JM, Bhattacharya SK, Boehm M, Borzilleri KA, Brown JA, Calabrese M, Caspers NL, Cokorinos E, Conn EL, Dowling MS, Edmonds DJ, Eng H, Fernando DP, Frisbie R, Hepworth D, Landro J, Mao Y, Rajamohan F, Reyes AR, Rose CR, Ryder T, Shavnya A, Smith AC, Tu M, Wolford AC, Xiao J. Discovery and preclinical characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a direct activator of adenosine monophosphate-activated protein kinase (AMPK), for the potential treatment of diabetic nephropathy. J Med Chem 2016; 59: 8068-8081
  • 5 Myers RW, Guan HP, Ehrhart J, Petrov A, Prahalada S, Tozzo E, Yang X, Kurtz MM, Trujillo M, Gonzalez Trotter D, Feng D, Xu S, Eiermann G, Holahan MA, Rubins D, Conarello S, Niu X, Souza SC, Miller C, Liu J, Lu K, Feng W, Li Y, Painter RE, Milligan JA, He H, Liu F, Ogawa A, Wisniewski D, Rohm RJ, Wang L, Bunzel M, Qian Y, Zhu W, Wang H, Bennet B, LaFranco Scheuch L, Fernandez GE, Li C, Klimas M, Zhou G, van Heek M, Biftu T, Weber A, Kelley DE, Thornberry N, Erion MD, Kemp DM, Sebhat IK. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 2017; 357: 507-511
  • 6 Cokorinos EC, Delmore J, Reyes AR, Albuquerque B, Kjøbsted R, Jørgensen NO, Tran JL, Jatkar A, Cialdea K, Esquejo RM, Meissen J, Calabrese MF, Cordes J, Moccia R, Tess D, Salatto CT, Coskran TM, Opsahl AC, Flynn D, Blatnik M, Li W, Kindt E, Foretz M, Viollet B, Ward J, Kurumbail RG, Kalgutkar AS, Wojtaszewski JFP, Cameron KO, Miller RA. Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab 2017; 25: 1147-1159
  • 7 Hardie DG. Molecular pathways: Is AMPK a friend or a foe in cancer?. Clin Cancer Res 2015; 21: 3836-3840
  • 8 Wang L, Li N, Shi FX, Xu WQ, Cao Y, Lei Y, Wang JZ, Tian Q, Zhou XW. Upregulation of AMPK ameliorates Alzheimerʼs disease-like Tau pathology and memory impairment. Mol Neurobiol 2020; 57: 3349-3361
  • 9 Mooney MH, Fogarty S, Stevenson C, Gallagher AM, Palit P, Hawley SA, Hardie DG, Coxon GD, Waigh RD, Tate RJ, Harvey AL, Furman BL. Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice. Br J Pharmacol 2008; 153: 1669-1677
  • 10 Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 2008; 57: 1414-1418
  • 11 Choumessi AT, Johanns M, Beaufay C, Herent MF, Stroobant V, Vertommen D, Corbet C, Jacobs R, Herinckx G, Steinberg GR, Feron O, Quetin-Leclercq J, Rider MH. Two isoprenylated flavonoids from Dorstenia psilurus activate AMPK, stimulate glucose uptake, inhibit glucose production and lower glycemia. Biochem J 2019; 476: 3687-3704
  • 12 Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R, Withka JM, Wang H, Borzilleri KA, Sahasrabudhe PV, Hoth LR, Geoghegan KF, Han S, Brown J, Subashi TA, Reyes AR, Frisbie RK, Ward J, Miller RA, Landro JA, Londregan AT, Carpino PA, Cabral S, Smith AC, Conn EL, Cameron KO, Qiu X, Kurumbail RG. Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 2014; 22: 1161-1172
  • 13 Pinkosky SL, Scott JW, Desjardins EM, Smith BK, Day EA, Ford RJ, Langendorf CG, Ling NXY, Nero TL, Loh K, Galic S, Hoque A, Smiles WJ, Ngoei KRW, Parker MW, Yan Y, Melcher K, Kemp BE, Oakhill JS, Steinberg GR. Long-chain fatty acyl-CoA esters regulate metabolism via allosteric control of AMPK β1 isoforms. Nat Metab 2020; 2: 873-881
  • 14 Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 2012; 336: 918-922
  • 15 Barron D, Ratinaud Y, Sakamoto KEI, Sanders M, Willows R. Direct AMPK activator compounds. WO Patent 2019228794A1, 2019
  • 16 Steinberg GR, Carling D. AMP-activated protein kinase: The current landscape for drug development. Nat Rev Drug Discov 2019; 18: 527-551
  • 17 Scott JW, van Denderen BJ, Jorgensen SB, Honeyman JE, Steinberg GR, Oakhill JS, Iseli TJ, Koay A, Gooley PR, Stapleton D, Kemp BE. Thienopyridone drugs are selective activators of AMP-activated protein kinase β1-containing complexes. Chem Biol 2008; 15: 1220-1230
  • 18 Sag D, Carling D, Stout RD, Suttles J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 2008; 181: 8633-8641
  • 19 Salatto CT, Miller RA, Cameron KO, Cokorinos E, Reyes A, Ward J, Calabrese MF, Kurumbail RG, Rajamohan F, Kalgutkar AS, Tess DA, Shavnya A, Genung NE, Edmonds DJ, Jatkar A, Maciejewski BS, Amaro M, Gandhok H, Monetti M, Cialdea K, Bollinger E, Kreeger JM, Coskran TM, Opsahl AC, Boucher GG, Birnbaum MJ, DaSilva-Jardine P, Rolph T. Selective activation of AMPK β1-containing isoforms improves kidney function in a rat model of diabetic nephropathy. J Pharmacol Exp Ther 2017; 361: 303-311
  • 20 Olivier S, Foretz M, Viollet B. Promise and challenges for direct small molecule AMPK activators. Biochem Pharmacol 2018; 153: 147-158
  • 21 Kim J, Yang G, Ha J. Targeting of AMP-activated protein kinase: prospects for computer-aided drug design. Expert Opin Drug Discov 2017; 12: 47-59
  • 22 Huang T, Sun J, Zhou S, Gao J, Liu Y. Identification of direct activator of adenosine monophosphate-activated protein kinase (AMPK) by structure-based virtual screening and molecular docking approach. Int J Mol Sci 2017; 18: 1408
  • 23 Chen Y, de Bruyn Kops C, Kirchmair J. Data resources for the computer-guided discovery of bioactive natural products. J Chem Inf Model 2017; 57: 2099-2111
  • 24 Kirchweger B, Rollinger JM. A Strength-Weaknesses-Opportunities-Threats (SWOT) analysis of cheminformatics in natural product research. In: Kinghorn DA, Falk H, Gibbons S, Kobayashi J, Asakawa Y, Liu JK. eds. Progress in the Chemistry of Organic Natural Products 110. Cham: Springer Nature Switzerland; 2019: 239-271
  • 25 Chen Y, Kirchmair J. Cheminformatics in natural product-based drug discovery. Mol Inform 2020; 39: e2000171
  • 26 Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 2007; 35: D301-D303
  • 27 Schöning-Stierand K, Diedrich K, Fährrolfes R, Flachsenberg F, Meyder A, Nittinger E, Steinegger R, Rarey M. ProteinsPlus: interactive analysis of protein-ligand binding interfaces. Nucleic Acids Res 2020; 48: W48-W53
  • 28 Meyder A, Nittinger E, Lange G, Klein R, Rarey M. Estimating electron density support for individual atoms and molecular fragments in X-ray structures. J Chem Inf Model 2017; 57: 2437-2447
  • 29 Gu X, Bridges MD, Yan Y, de Waal PW, Zhou XE, Suino-Powell KM, Xu HE, Hubbell WL, Melcher K. Conformational heterogeneity of the allosteric drug and metabolite (ADaM) site in AMP-activated protein kinase (AMPK). J Biol Chem 2018; 293: 16994-17007
  • 30 Chen Y, de Bruyn Kops C, Kirchmair J. Resources for chemical, biological, and structural data on natural products. In: Kinghorn DA, Falk H, Gibbons S, Kobayashi J, Asakawa Y, Liu JK. eds. Progress in the Chemistry of Organic Natural Products 110. Cham: Springer Nature Switzerland; 2019: 37-71
  • 31 Rollinger JM, Langer T, Stuppner H. Strategies for efficient lead structure discovery from natural products. Curr Med Chem 2006; 13: 1491-1507
  • 32 Chen Y, Stork C, Hirte S, Kirchmair J. NP-Scout: Machine learning approach for the quantification and visualization of the natural product-likeness of small molecules. Biomolecules 2019; 9: 43
  • 33 Hawkins PC, Skillman AG, Nicholls A. Comparison of shape-matching and docking as virtual screening tools. J Med Chem 2007; 50: 74-82
  • 34 Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31: 455-461
  • 35 Fischer A, Smieško M, Sellner M, Lill MA. Decision making in structure-based drug discovery: visual inspection of docking results. J Med Chem 2021; 64: 2489-2500
  • 36 Stork C, Chen Y, Sicho M, Kirchmair J. Hit Dexter 2.0: Machine-learning models for the prediction of frequent hitters. J Chem Inf Model 2019; 59: 1030-1043
  • 37 Majumder PL, Lahiri S. Lusianthrin and lusianthridin, two stilbenoids from the orchid Lusia indivisa . Phytochemistry 1990; 29: 621-624
  • 38 Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R, Zhao G, Marsh K, Kym P, Jung P, Camp HS, Frevert E. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 2006; 3: 403-416
  • 39 Lan P, Romero FA, Wodka D, Kassick AJ, Dang Q, Gibson T, Cashion D, Zhou G, Chen Y, Zhang X, Zhang A, Li Y, Trujillo M, Shao Q, Wu M, Xu S, He H, Mackenna D, Staunton J, Chapman KT, Weber A, Sebhat IK, Makara GM. Hit-to-Lead optimization and discovery of 5-((5-([1,1′-biphenyl]-4-yl)-6-chloro-1H-benzo[d]imidazol-2-yl)oxy)-2-methylbenzoic acid (MK-3903): a novel class of benzimidazole-based activators of AMP-activated protein kinase. J Med Chem 2017; 60: 9040-9052
  • 40 Lin J, Zhuge J, Zheng X, Wu Y, Zhang Z, Xu T, Meftah Z, Xu H, Wu Y, Tian N, Gao W, Zhou Y, Zhang X, Wang X. Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radic Biol Med 2020; 150: 109-119
  • 41 Gong Z, Huang J, Xu B, Ou Z, Zhang L, Lin X, Ye X, Kong X, Long D, Sun X, He X, Xu L, Li Q, Xuan A. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J Neuroinflammation 2019; 16: 62
  • 42 Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 2013; 27: 221-234
  • 43 Stork C, Embruch G, Šícho M, de Bruyn Kops C, Chen Y, Svozil D, Kirchmair J. NERDD: a web portal providing access to in silico tools for drug discovery. Bioinformatics 2019; 36: 1291-1292
  • 44 Wolber G, Dornhofer AA, Langer T. Efficient overlay of small organic molecules using 3D pharmacophores. J Comput Aided Mol Des 2006; 20: 773-788
  • 45 Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 2010; 50: 572-584