Synthesis 2022; 54(22): 4963-4970
DOI: 10.1055/a-1786-9881
special topic
Aryne Chemistry in Synthesis

Formal Syntheses of Dictyodendrins B, C, and E by a Multi-Substituted Indole Synthesis

Akira Kabuki
,
This work was supported by JSPS KAKENHI Grant Number JP19H02726 (to J.Y.). This work was partly supported by JST ERATO Grant Number JPMJER1901.


Abstract

The dictyodendrins are a family of marine alkaloids, which possess a highly substituted pyrrolo[2,3-c]carbazole core. This core structure can be regarded as a multi-substituted indole and aniline moiety. To achieve a concise synthesis of dictyodendrins, we planned to capitalize on our previously developed multi-substituted indole synthesis. By using this method along with two C–H functionalizations, formal syntheses of dictyodendrins B, C, and E were achieved.

Supporting Information



Publication History

Received: 12 February 2022

Accepted after revision: 03 March 2022

Accepted Manuscript online:
03 March 2022

Article published online:
10 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Warabi K, Matsunaga S, van Soest RW. M, Fusetani N. J. Org. Chem. 2003; 68: 2765
    • 1b Zhang H, Conte MM, Khalil Z, Huang X.-C, Capon RJ. RSC Adv. 2012; 2: 4209
  • 2 Seimiya H. Drug Deliv. Syst. 2006; 21: 24
  • 3 Baxter EW, Conway KA, Kennis L, Bischoff F, Mercken MH, De Winter HL, Reynolds CH, Tounge BA, Luo C, Scott MK, Huang Y, Braeken M, Pieters SM. A, Berthelot DJ. C, Masure S, Bruinzeel WD, Jordan AD, Parker MH, Boyd RE, Qu J, Alexander RS, Brenneman DE, Reitz AB. J. Med. Chem. 2007; 50: 4261
    • 4a Fürstner A, Domostoj MM, Scheiper B. J. Am. Chem. Soc. 2005; 127: 11620
    • 4b Fürstner A, Domostoj MM, Scheiper B. J. Am. Chem. Soc. 2006; 128: 8087
    • 4c Hirao S, Sugiyama Y, Iwao M, Ishibashi F. Biosci. Biotechnol. Biochem. 2009; 73: 1764
    • 4d Hirao S, Yoshinaga Y, Iwao M, Ishibashi F. Tetrahedron Lett. 2010; 51: 533
    • 4e Okano K, Fujiwara H, Noji T, Fukuyama T, Tokuyama H. Angew. Chem. Int. Ed. 2010; 49: 5925
    • 4f Okano K, Fujiwara H, Noji T, Fukuyama T, Tokuyama H. Chem. Asian J. 2011; 6: 560
    • 4g Liang J, Hu W, Tao P, Jia Y. J. Org. Chem. 2013; 78: 5810
    • 4h Tao P, Liang J, Jia Y. Eur. J. Org. Chem. 2014; 5735
    • 4i Yamaguchi AD, Chepiga KM, Yamaguchi J, Itami K, Davies HM. L. J. Am. Chem. Soc. 2015; 137: 644
    • 4j Pitts AK, O’Hara F, Snell RH, Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 5451
    • 4k Zhang W, Ready JM. J. Am. Chem. Soc. 2016; 138: 10684
    • 4l Matsuoka J, Matsuda Y, Kawada Y, Oishi S, Ohno H. Angew. Chem. Int. Ed. 2017; 56: 7444
    • 4m Matsuoka J, Inuki S, Matsuda Y, Miyamoto Y, Otani M, Oka M, Oishi S, Ohno H. Chem. Eur. J. 2020; 26: 11150
    • 4n Banne S, Reddy DP, Li W, Wang C, Guo J, He Y. Org. Lett. 2017; 19: 4996
  • 5 Suzuki S, Asako T, Itami K, Yamaguchi J. Org. Biomol. Chem. 2018; 16: 3771
    • 6a Suzuki S, Segawa Y, Itami K, Yamaguchi J. Nat. Chem. 2015; 7: 227
    • 6b Suzuki S, Itami K, Yamaguchi J. Angew. Chem. Int. Ed. 2017; 56: 15010
    • 6c Asako T, Suzuki S, Itami K, Muto K, Yamaguchi J. Chem. Lett. 2018; 47: 968
    • 6d Tanaka S, Asako T, Ota E, Yamaguchi J. Chem. Lett. 2020; 49: 918
    • 6e Asako T, Suzuki S, Tanaka S, Ota E, Yamaguchi J. J. Org. Chem. 2020; 85: 15437
  • 7 Taylor SK, Clark DL, Heinz KJ, Schramm SB, Westermann CD, Barnell KK. J. Org. Chem. 1983; 48: 592
  • 8 Vaillant FL, Courant T, Waser J. Angew. Chem. Int. Ed. 2015; 54: 11200
  • 9 CCDC 2070911 (13) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 10 Liyu J, Sperry J. Tetrahedron Lett. 2017; 58: 1699
  • 11 Loach RP, Fenton OS, Amaike K, Siegel DS, Ozkal E, Movassaghi M. J. Org. Chem. 2014; 79: 11254