CC BY-NC-ND 4.0 · Thromb Haemost 2022; 122(08): 1314-1325
DOI: 10.1055/a-1759-9962
Coagulation and Fibrinolysis

CM-352 Efficacy in a Mouse Model of Anticoagulant-Associated Intracranial Hemorrhage

1   Laboratory of Atherothrombosis, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
,
1   Laboratory of Atherothrombosis, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
2   Neurology Department, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
,
1   Laboratory of Atherothrombosis, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
2   Neurology Department, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
3   CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Spain
,
1   Laboratory of Atherothrombosis, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
2   Neurology Department, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
3   CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Spain
,
Beatriz Zandio
2   Neurology Department, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
,
Ramón Lecumberri
3   CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Spain
4   Haematology Department, Clínica Universidad de Navarra, Pamplona, Spain
,
1   Laboratory of Atherothrombosis, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
2   Neurology Department, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
3   CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Spain
,
5   Small Molecules Platform, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
,
Antonio Pineda-Lucena
5   Small Molecules Platform, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
,
1   Laboratory of Atherothrombosis, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
2   Neurology Department, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
3   CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Spain
4   Haematology Department, Clínica Universidad de Navarra, Pamplona, Spain
,
2   Neurology Department, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
3   CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Spain
4   Haematology Department, Clínica Universidad de Navarra, Pamplona, Spain
5   Small Molecules Platform, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
6   Red de Investigación Cooperativa de Enfermedades Vasculares Cerebrales (INVICTUS PLUS), Spain
,
1   Laboratory of Atherothrombosis, CIMA Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
2   Neurology Department, Complejo Hospitalario de Navarra, IdisNA, Pamplona, Spain
3   CIBER Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Spain
› Author Affiliations
Funding This work was supported by ISCIII (PI15/01807 and PI19/00065”), co-funded by ERDF, “A way to make Europe”, the Spanish Society of Thrombosis and Haemostasis (SETH), the Navarra Government (02/2015), and the Virto Group (Navarra, Spain).


Abstract

Background Intracranial hemorrhage (ICH) is one of the major devastating complications of anticoagulation. Matrix metalloproteinase (MMP) inhibition has been proposed as a novel pharmacological approach for ICH treatment.

Objectives We evaluated the effects of CM-352 (MMP-fibrinolysis inhibitor) in an experimental ICH model associated with oral anticoagulants as compared with clinically used prothrombin complex concentrate (PCC).

Methods ICH was induced by collagenase injection into the striatum of wild type (C57BL/6J) anticoagulated mice (warfarin or rivaroxaban) and Mmp10−/− mice. Hematoma volume and neurological deficits were measured 24 hours later by diaminobenzidine staining and different behavioral tests. Circulating plasminogen activator inhibitor-1 (PAI-1) activity and interleukin-6 (IL-6) were measured in plasma samples and local inflammation was assessed by neutrophil infiltration. Finally, fibrinolytic effects of MMP-10 and rivaroxaban were evaluated by thromboelastometry and thrombin-activatable fibrinolysis inhibitor (TAFI) activation assays.

Results Only PCC reduced hemorrhage volume and improved functional outcome in warfarin-ICH, but both PCC and CM-352 treatments diminished hemorrhage volume (46%, p < 0.01 and 64%, p < 0.001, respectively) and ameliorated functional outcome in rivaroxaban-ICH. We further demonstrated that CM-352, but not PCC, decreased neutrophil infiltration in the hemorrhage area at 24 hours. The effect of CM-352 could be related to MMP-10 inhibition since Mmp10−/− mice showed lower hemorrhage volume, better neurological score, reduced IL-6 levels and neutrophil infiltration, and increased PAI-1 after experimental ICH. Finally, we found that CM-352 reduced MMP-10 and rivaroxaban-related fibrinolytic effects in thromboelastometry and TAFI activation.

Conclusion CM-352 treatment, by diminishing MMPs and rivaroxaban-associated fibrinolytic effects, might be a novel antihemorrhagic strategy for rivaroxaban-associated ICH.

Author Contributions

M.N.O. participated in the design of the project, experimental work, statistical analysis, and wrote, reviewed, and edited the manuscript; J.M.E. participated in the analysis of data, and edited and reviewed the manuscript; C.R. participated in experimental work, data analysis, and reviewed the manuscript; J.A.R., B.Z., J.H., J.O., J.A.P., and R.M. participated in the design of the project and reviewed the manuscript; A.P.L., and R.L. have provided intellectual content and reviewed the manuscript; and J.O. was in charge of project design, supervised the work and wrote, edited, and reviewed the manuscript.


Supplementary Material



Publication History

Received: 29 July 2021

Accepted: 05 January 2022

Accepted Manuscript online:
03 February 2022

Article published online:
05 May 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Al-Shahi Salman R, Frantzias J, Lee RJ. et al; VISTA-ICH Collaboration, ICH Growth Individual Patient Data Meta-analysis Collaborators. Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol 2018; 17 (10) 885-894
  • 2 Nadeau CA, Dietrich K, Wilkinson CM. et al. Prolonged blood-brain barrier injury occurs after experimental intracerebral hemorrhage and is not acutely associated with additional bleeding. Transl Stroke Res 2019; 10 (03) 287-297
  • 3 Haller JT, Wiss AL, May CC, Jones GM, Smetana KS. Acute management of hypertension following intracerebral hemorrhage. Crit Care Nurs Q 2019; 42 (02) 129-147
  • 4 Kuramatsu JB, Huttner HB. Management of oral anticoagulation after intracerebral hemorrhage. Int J Stroke 2019; 14 (03) 238-246
  • 5 Veltkamp R, Purrucker J. Management of spontaneous intracerebral hemorrhage. Curr Neurol Neurosci Rep 2017; 17 (10) 80
  • 6 Ruff CT, Giugliano RP, Braunwald E. et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 2014; 383 (9921): 955-962
  • 7 Connolly SJ, Crowther M, Eikelboom JW. et al; ANNEXA-4 Investigators. Full study report of andexanet alfa for bleeding associated with factor Xa inhibitors. N Engl J Med 2019; 380 (14) 1326-1335
  • 8 Pollack Jr CV, Reilly PA, van Ryn J. et al. Idarucizumab for dabigatran reversal - full cohort analysis. N Engl J Med 2017; 377 (05) 431-441
  • 9 Ruff CT, Giugliano RP, Antman EM. Management of bleeding with non-vitamin K antagonist oral anticoagulants in the era of specific reversal agents. Circulation 2016; 134 (03) 248-261
  • 10 Gómez-Outes A, Alcubilla P, Calvo-Rojas G. et al. Meta-analysis of reversal agents for severe bleeding associated with direct oral anticoagulants. J Am Coll Cardiol 2021; 77 (24) 2987-3001
  • 11 Gerner ST, Kuramatsu JB, Sembill JA. et al; RETRACE II (German-Wide Multicenter Analysis of Oral Anticoagulation-Associated Intracerebral Hemorrhage II) Investigators. Association of prothrombin complex concentrate administration and hematoma enlargement in non-vitamin K antagonist oral anticoagulant-related intracerebral hemorrhage. Ann Neurol 2018; 83 (01) 186-196
  • 12 Kim JY, Bae HJ. Spontaneous intracerebral hemorrhage: management. J Stroke 2017; 19 (01) 28-39
  • 13 Selim M. Hemorrhagic Stroke Academia Industry (HEADS) Roundtable Participants. Unmet needs and challenges in clinical research of intracerebral hemorrhage. Stroke 2018; 49 (05) 1299-1307
  • 14 Dang B, Duan X, Wang Z, He W, Chen G. A therapeutic target of cerebral hemorrhagic stroke: matrix metalloproteinase- 9. Curr Drug Targets 2017; 18 (12) 1358-1366
  • 15 Castellazzi M, Tamborino C, De Santis G. et al. Timing of serum active MMP-9 and MMP-2 levels in acute and subacute phases after spontaneous intracerebral hemorrhage. Acta Neurochir Suppl (Wien) 2010; 106: 137-140
  • 16 Florczak-Rzepka M, Grond-Ginsbach C, Montaner J, Steiner T. Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: an update. Cerebrovasc Dis 2012; 34 (04) 249-262
  • 17 Wang HX, Yang QD, Liu BQ. et al. TIMP-1 polymorphisms in a Chinese Han population with intracerebral hemorrhage. Int J Neurosci 2014; 124 (01) 61-67
  • 18 Montaner J, Ramiro L, Simats A. et al. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci 2019; 76 (16) 3117-3140
  • 19 Mishiro K, Ishiguro M, Suzuki Y, Tsuruma K, Shimazawa M, Hara H. A broad-spectrum matrix metalloproteinase inhibitor prevents hemorrhagic complications induced by tissue plasminogen activator in mice. Neuroscience 2012; 205: 39-48
  • 20 Lijnen HR, Juhan-Vague I. The fibrinolytic system and obesity. Thromb Haemost 2002; 88 (05) 882
  • 21 Mühl D, Ghosh S, Uzuelli JA, Lantos J, Tanus-Santos JE. Increases in circulating matrix metalloproteinase-9 levels following fibrinolysis for acute pulmonary embolism. Thromb Res 2010; 125 (06) 549-553
  • 22 Orbe J, Barrenetxe J, Rodriguez JA. et al. Matrix metalloproteinase-10 effectively reduces infarct size in experimental stroke by enhancing fibrinolysis via a thrombin-activatable fibrinolysis inhibitor-mediated mechanism. Circulation 2011; 124 (25) 2909-2919
  • 23 Roncal C, Martinez de Lizarrondo S, Salicio A. et al. New thrombolytic strategy providing neuroprotection in experimental ischemic stroke: MMP10 alone or in combination with tissue-type plasminogen activator. Cardiovasc Res 2017; 113 (10) 1219-1229
  • 24 Navarro-Oviedo M, Roncal C, Salicio A. et al. MMP10 promotes efficient thrombolysis after ischemic stroke in mice with induced diabetes. Transl Stroke Res 2019; 10 (04) 389-401
  • 25 Orbe J, Sánchez-Arias JA, Rabal O. et al. Design, synthesis, and biological evaluation of novel matrix metalloproteinase inhibitors as potent antihemorrhagic agents: from hit identification to an optimized lead. J Med Chem 2015; 58 (05) 2465-2488
  • 26 Orbe J, Rodríguez JA, Sánchez-Arias JA. et al. Discovery and safety profiling of a potent preclinical candidate, (4-[4-[[(3R)-3-(hydroxycarbamoyl)-8-azaspiro[4.5]decan-3-yl]sulfonyl]phenoxy]-N-methylbenzamide) (CM-352), for the prevention and treatment of hemorrhage. J Med Chem 2015; 58 (07) 2941-2957
  • 27 Rodríguez JA, Sobrino T, López-Arias E. et al. CM352 reduces brain damage and improves functional recovery in a rat model of intracerebral hemorrhage. J Am Heart Assoc 2017; 6 (06) e006042
  • 28 Zipperle J, Schlimp CJ, Holnthoner W. et al. A novel coagulation assay incorporating adherent endothelial cells in thromboelastometry. Thromb Haemost 2013; 109 (05) 869-877
  • 29 Schultz NH, Holme PA, Henriksson CE. et al. The influence of rivaroxaban on markers of fibrinolysis and endothelial cell activation/injury in patients with venous thrombosis. Thromb Res 2019; 177: 154-156
  • 30 Navarro-Oviedo M, Muñoz-Arrondo R, Zandio B. et al. Circulating TIMP-1 is associated with hematoma volume in patients with spontaneous intracranial hemorrhage. Sci Rep 2020; 10 (01) 10329
  • 31 Mohammadi K, Yaribash S, Sani MA, Talasaz AH. Efficacy and safety of the fixed-dose versus variable-dose of 4-PCC for vitamin K antagonist reversal: a comprehensive systematic review and meta-analysis. Cardiovasc Drugs Ther 2021; DOI: 10.1007/s10557-021-07192-0.
  • 32 Christensen H, Cordonnier C, Kõrv J. et al. European Stroke Organisation guideline on reversal of oral anticoagulants in acute intracerebral haemorrhage. Eur Stroke J 2019; 4 (04) 294-306
  • 33 Illanes S, Zhou W, Schwarting S, Heiland S, Veltkamp R. Comparative effectiveness of hemostatic therapy in experimental warfarin-associated intracerebral hemorrhage. Stroke 2011; 42 (01) 191-195
  • 34 Yasaka M, Brainsky A, Toyoda K. Prothrombin complex concentrate for vitamin K antagonist-associated intracranial hemorrhage: global evidence and the Japanese perspective. Circ J 2017; 81 (11) 1564-1573
  • 35 Tanaka KA, Mazzeffi M, Durila M. Role of prothrombin complex concentrate in perioperative coagulation therapy. J Intensive Care 2014; 2 (01) 60
  • 36 Grottke O, Braunschweig T, Spronk HMH. et al. Increasing concentrations of prothrombin complex concentrate induce disseminated intravascular coagulation in a pig model of coagulopathy with blunt liver injury. Blood 2011; 118 (07) 1943-1951
  • 37 Kuramatsu JB, Sembill JA, Huttner HB. Reversal of oral anticoagulation in patients with acute intracerebral hemorrhage. Crit Care 2019; 23 (01) 206
  • 38 Panos NG, Cook AM, John S, Jones GM. Neurocritical Care Society (NCS) Pharmacy Study Group. Factor Xa inhibitor-related intracranial hemorrhage: results from a multicenter, observational cohort receiving prothrombin complex concentrates. Circulation 2020; 141 (21) 1681-1689
  • 39 Zhou W, Zorn M, Nawroth P. et al. Hemostatic therapy in experimental intracerebral hemorrhage associated with rivaroxaban. Stroke 2013; 44 (03) 771-778
  • 40 Shaw JR, Siegal DM. Pharmacological reversal of the direct oral anticoagulants-a comprehensive review of the literature. Res Pract Thromb Haemost 2018; 2 (02) 251-265
  • 41 Álvarez E, Paradela-Dobarro B, Raposeiras-Roubín S, González-Juanatey JR. Protective, repairing and fibrinolytic effects of rivaroxaban on vascular endothelium. Br J Clin Pharmacol 2018; 84 (02) 280-291
  • 42 Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med 2021; 53 (07) 1116-1123
  • 43 Carter RLR, Talbot K, Hur WS. et al. Rivaroxaban and apixaban induce clotting factor Xa fibrinolytic activity. J Thromb Haemost 2018; 16 (11) 2276-2288
  • 44 Tai SH, Chen HY, Lee EJ. et al. Melatonin inhibits postischemic matrix metalloproteinase-9 (MMP-9) activation via dual modulation of plasminogen/plasmin system and endogenous MMP inhibitor in mice subjected to transient focal cerebral ischemia. J Pineal Res 2010; 49 (04) 332-341
  • 45 Quemener C, Gabison EE, Naïmi B. et al. Extracellular matrix metalloproteinase inducer up-regulates the urokinase-type plasminogen activator system promoting tumor cell invasion. Cancer Res 2007; 67 (01) 9-15
  • 46 Xue M, Hollenberg MD, Yong VW. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci 2006; 26 (40) 10281-10291
  • 47 Wells JEA, Biernaskie J, Szymanska A, Larsen PH, Yong VW, Corbett D. Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 2005; 21 (01) 187-196