Exp Clin Endocrinol Diabetes 2022; 130(05): 313-326
DOI: 10.1055/a-1756-4509
Review

New Paradigms for Familiar Diseases: Lessons Learned on Circulatory Bacterial Signatures in Cardiometabolic Diseases

Rima Chakaroun
1   Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
2   Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
,
Lucas Massier
1   Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
3   Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
,
Niculina Musat
4   Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
,
Peter Kovacs
1   Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
5   Deutsches Zentrum für Diabetesforschung eV, Neuherberg, Germany
› Author Affiliations

Abstract

Despite the strongly accumulating evidence for microbial signatures in metabolic tissues, including the blood, suggesting a novel paradigm for metabolic disease development, the notion of a core blood bacterial signature in health and disease remains a contentious concept. Recent studies clearly demonstrate that under a strict contamination-free environment, methods such as 16 S rRNA gene sequencing, fluorescence in-situ hybridization, transmission electron microscopy, and several more, allied with advanced bioinformatics tools, allow unambiguous detection and quantification of bacteria and bacterial DNA in human tissues. Bacterial load and compositional changes in the blood have been reported for numerous disease states, suggesting that bacteria and their components may partially induce systemic inflammation in cardiometabolic disease. This concept has been so far primarily based on measurements of surrogate parameters. It is now highly desirable to translate the current knowledge into diagnostic, prognostic, and therapeutic approaches.

This review addresses the potential clinical relevance of a blood bacterial signature pertinent to cardiometabolic diseases and outcomes and new avenues for translational approaches. It discusses pitfalls related to research in low bacterial biomass while proposing mitigation strategies for future research and application approaches.



Publication History

Received: 12 October 2021
Received: 15 December 2021

Accepted: 24 January 2022

Article published online:
23 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Moeller AH, Caro-Quintero A, Mjungu D. et al. Cospeciation of gut microbiota with hominids. Science 2016; 353: 380-382
  • 2 Garn H, Potaczek DP, Pfefferle PI. The hygiene hypothesis and new perspectives-current challenges meeting an old postulate. Front Immunol 2021; 12: 637087
  • 3 Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 2013; 11: 227-238 DOI: 10.1038/nrmicro2974.
  • 4 Haiser HJ, Gootenberg DB, Chatman K. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013; 341: 295-298
  • 5 Alexander JL, Wilson ID, Teare J. et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 2017; 14: 356-365
  • 6 McQuade JL, Daniel CR, Helmink BA. et al. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol 2019; 20: e77-e91
  • 7 Pedersen HK, Gudmundsdottir V, Nielsen HB. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016; 535: 376-381
  • 8 Turnbaugh PJ, Ley RE, Hamady M. et al. The human microbiome project. Nature 2007; 449: 804-810 Stand: 30.09.2021
  • 9 Vieira-Silva S, Falony G, Belda E. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 2020; 581: 310-315
  • 10 Molinaro A, Bel Lassen P, Henricsson M. et al. Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat Commun 2020; 11: 5881
  • 11 Falony G, Joossens M, Vieira-Silva S. et al. Population-level analysis of gut microbiome variation. Science 2016; 352: 560-564
  • 12 Forslund K, Hildebrand F, Nielsen T. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528: 262-266
  • 13 Vich Vila A, Collij V, Sanna S. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun 2020; 11: 362
  • 14 Qin J, Li Y, Cai Z. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60
  • 15 Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021; 19: 55-71 DOI: 10.1038/s41579-020-0433-9.
  • 16 Lockhart PB, Brennan MT, Sasser HC. et al. Bacteremia associated with toothbrushing and dental extraction. Circulation 2008; 117: 3118-3125
  • 17 Mougeot FKB, Saunders SE, Brennan MT. et al. Associations between bacteremia from oral sources and distant-site infections: Tooth brushing versus single tooth extraction. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119: 430-435
  • 18 Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542: 177-185
  • 19 Cani PD, Amar J, Iglesias MA. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761-1772
  • 20 Agwunobi AO, Reid C, Maycock P. et al. Insulin resistance and substrate utilization in human endotoxemia. J Clin Endocrinol Metab 2000; 85: 3770-3778
  • 21 Massier L, Chakaroun R, Tabei S. et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 2020; 69: 1796-1806
  • 22 Chakaroun RM, Massier L, Heintz-Buschart A. et al. Circulating bacterial signature is linked to metabolic disease and shifts with metabolic alleviation after bariatric surgery. Genome Med 2021; 13: 105
  • 23 Anhê FF, Jensen BAH, Varin TV. et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat Metab 2020; 2: 233-242 Stand: 30.09.2021
  • 24 Poore GD, Kopylova E, Zhu Q. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020; 579: 567-574
  • 25 Tedeschi GG, Amici D, Paparelli M. Incorporation of nucleosides and amino-acids in human erythrocyte suspensions: possible relation with a diffuse infection of mycoplasms or bacteria in the L form. Nature 1969; 222: 1285-1286
  • 26 Castillo DJ, Rifkin RF, Cowan DA. et al. The healthy human blood microbiome: Fact or fiction?. Front Cell Infect Microbiol 2019; 9: 148
  • 27 Moriyama K, Ando C, Tashiro K. et al. Polymerase chain reaction detection of bacterial 16S rRNA gene in human blood. Microbiol Immunol 2008; 52: 375-382 DOI: 10.1111/j.1348-0421.2008.00048.x.
  • 28 Dunne WM, Burnham C-AD. eds. Dark art of blood cultures. John Wiley & Sons; 2017
  • 29 Dinakaran V, Rathinavel A, Pushpanathan M. et al. Elevated levels of circulating DNA in cardiovascular disease patients: Metagenomic profiling of microbiome in the circulation. PLoS ONE 2014; 9: e105221
  • 30 Amar J, Serino M, Lange C. et al. Involvement of tissue bacteria in the onset of diabetes in humans: Evidence for a concept. Diabetologia 2011; 54: 3055-3061
  • 31 Sato J, Kanazawa A, Ikeda F. et al. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 2014; 37: 2343-2350
  • 32 Damgaard C, Magnussen K, Enevold C. et al. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations. PLoS ONE 2015; 10: e0120826 DOI: 10.1371/journal.pone.0120826.
  • 33 Traykova D, Schneider B, Chojkier M. et al. Blood microbiome quantity and the hyperdynamic circulation in decompensated cirrhotic patients. PLoS ONE 2017; 12: e0169310
  • 34 Li Q, Wang C, Tang C. et al. Identification and characterization of blood and neutrophil-associated microbiomes in patients with severe acute pncreatitis using next-generation sequencing. Front Cell Infect Microbiol 2018; 8: 5
  • 35 Nikkari S, McLaughlin IJ, Bi W. et al. Does blood of healthy subjects contain bacterial ribosomal DNA?. J Clin Microbiol 2001; 39: 1956-1959
  • 36 McLaughlin RW, Vali H, Lau PCK. et al. Are there naturally occurring pleomorphic bacteria in the blood of healthy humans?. J Clin Microbiol 2002; 40: 4771-4775
  • 37 O’Dwyer MJ, Starczewska MH, Schrenzel J. et al. The detection of microbial DNA but not cultured bacteria is associated with increased mortality in patients with suspected sepsis – a prospective multi-centre European observational study. Clin Microbiol Infect 2017; 23: 208.e1-e208.e6 DOI: 10.1016/j.cmi.2016.11.010.
  • 38 Whittle E, Leonard MO, Harrison R. et al. Multi-method characterization of the human circulating microbiome. Front Microbiol 2018; 9: 3266
  • 39 Panaiotov S, Hodzhev Y, Tsafarova B. et al. Culturable and non-culturable blood microbiota of healthy individuals. Microorganisms 2021; 9 DOI: 10.3390/microorganisms9071464.
  • 40 Martel J, Wu C-Y, Huang P-R. et al. Pleomorphic bacteria-like structures in human blood represent non-living membrane vesicles and protein particles. Sci Rep 2017; 7: 10650
  • 41 Olde Loohuis LM, Mangul S, Ori APS. et al. Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Transl Psychiatry 2018; 8: 96
  • 42 Potgieter M, Bester J, Kell DB. et al. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015; 39: 567-591
  • 43 Chong J, Liu P, Zhou G. et al. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 2020; 15: 799-821
  • 44 Bolyen E, Rideout JR, Dillon MR. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019; 37: 852-857
  • 45 Leibovici L, Cohen O, Wysenbeek AJ. Occult bacterial infection in adults with unexplained fever. Validation of a diagnostic index. Arch Intern Med 1990; 150: 1270-1272
  • 46 Leibovici L, Samra Z, Konisberger H. et al. Bacteremia in adult diabetic patients. Diabetes Care 1991; 14: 89-94
  • 47 Amar J, Lange C, Payros G. et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: The D.E.S.I.R. study. PLoS ONE 2013; 8: e54461 DOI: 10.1371/journal.pone.0054461.
  • 48 Qiu J, Zhou H, Jing Y. et al. Association between blood microbiome and type 2 diabetes mellitus: A nested case-control study. J Clin Lab Anal 2019; 33: e22842
  • 49 Ortiz S, Zapater P, Estrada JL. et al. Bacterial DNA translocation holds increased insulin resistance and systemic inflammatory levels in morbid obese patients. J Clin Endocrinol Metab 2014; 99: 2575-2583
  • 50 Simon TG, Roelstraete B, Hagström H. et al. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: Results from a nationwide histology cohort. Gut 2021; DOI: 10.1136/gutjnl-2021-325724.
  • 51 Schierwagen R, Alvarez-Silva C, Madsen MSA. et al. Circulating microbiome in blood of different circulatory compartments. Gut 2019; 68: 578-580
  • 52 Usui S, Ebinuma H, Chu P-S. et al. Detection of bacterial DNA by in situ hybridization in patients with decompensated liver cirrhosis. BMC Gastroenterol 2017; 17: 106
  • 53 Mok Y, Ballew SH, Matsushita K. Chronic kidney disease measures for cardiovascular risk prediction. Atherosclerosis 2021; DOI: 10.1016/j.atherosclerosis.2021.09.007.
  • 54 Hobby GP, Karaduta O, Dusio GF. et al. Translational physiology: Chronic kidney disease and the gut microbiome. Am J Physiol – Renal Physiol 2019; 316: F1211 Stand: 01.10.2021
  • 55 Vanholder R, Schepers E, Pletinck A. et al. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: A systematic review. J Am Soc Nephrol 2014; 25: 1897-1907
  • 56 Smith PM, Howitt MR, Panikov N. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341: 569-573
  • 57 Wong J, Piceno YM, DeSantis TZ. et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 2014; 39: 230-237
  • 58 Shah NB, Allegretti AS, Nigwekar SU. et al. Blood microbiome profile in CKD: A pilot study. Clin J Am Soc Nephrol 2019; 14: 692-701
  • 59 Luo Z, Alekseyenko AV, Ogunrinde E. et al. Rigorous plasma microbiome analysis method enables disease association discovery in clinic. Front Microbiol 2020; 11: 613268
  • 60 Cowan LT, Lutsey PL, Pankow JS. et al. Inpatient and outpatient infection as a trigger of cardiovascular disease: The ARIC study. J Am Heart Assoc 2018; 7: e009683
  • 61 Zhou X, Li J, Guo J. et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 2018; 6: 66
  • 62 Amar J, Lelouvier B, Servant F. et al. Blood microbiota modification after myocardial infarction depends upon low-density lipoprotein cholesterol levels. J Am Heart Assoc 2019; 8: e011797
  • 63 Taxt AM, Avershina E, Frye SA. et al. Rapid identification of pathogens, antibiotic resistance genes and plasmids in blood cultures by nanopore sequencing. Sci Rep 2020; 10 DOI: 10.1038/s41598-020-64616-x.
  • 64 Ray C, Ming X. Climate change and human health: A review of allergies, autoimmunity and the microbiome. Int J Environ Res Public Health 2020; 17: 4814 DOI: 10.3390/ijerph17134814.
  • 65 Heintz-Buschart A, Wilmes P. Human gut microbiome: Function matters. Trends Microbiol 2018; 26: 563-574
  • 66 Snitkin ES, Zelazny AM, Montero CI. et al. Genome-wide recombination drives diversification of epidemic strains of Acinetobacter baumannii. Proc Natl Acad Sci U S A 2011; 108: 13758-13763
  • 67 Phua J, Ngerng W, See K. et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Crit Care 2013; 17: R202
  • 68 Dellinger RP, Levy MM, Rhodes A. et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39: 165-228
  • 69 Blennow O, Ljungman P, Sparrelid E. et al. Incidence, risk factors, and outcome of bloodstream infections during the pre-engraftment phase in 521 allogeneic hematopoietic stem cell transplantations. Transpl Infect Dis 2014; 16: 106-114
  • 70 Tamburini FB, Andermann TM, Tkachenko E. et al. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nat Med 2018; 24: 1809-1814
  • 71 Dingemans J, Ye L, Hildebrand F. et al. The deletion of TonB-dependent receptor genes is part of the genome reduction process that occurs during adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung. Pathog Dis 2014; 71: 26-38
  • 72 Lythgoe KA, Hall M, Ferretti L. et al. SARS-CoV-2 within-host diversity and transmission. Science 2021; 372 DOI: 10.1126/science.abg0821.
  • 73 Bloos F, Hinder F, Becker K. et al. A multicenter trial to compare blood culture with polymerase chain reaction in severe human sepsis. Intensive Care Med 2010; 36: 241-247
  • 74 Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opinion on Investigational Drugs 2015; 24: 283-307 DOI: 10.1517/13543784.2015.974804.
  • 75 Leentjens J, Kox M, van der Hoeven JG. et al. Immunotherapy for the adjunctive treatment of sepsis: From immunosuppression to immunostimulation. Time for a paradigm change?. Am J Respir Crit Care Med 2013; 187: 1287-1293
  • 76 Savva A, Roger T. Targeting toll-like receptors: Promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front Immunol 2013; 4: 387
  • 77 Cho EJ, Leem S, Kim SA. et al. Circulating microbiota-based metagenomic signature for detection of hepatocellular carcinoma. Sci Rep 2019; 9: 7536
  • 78 Bullman S, Pedamallu CS, Sicinska E. et al. Analysis of persistence and antibiotic response in colorectal cancer. Science 2017; 358: 1443-1448
  • 79 Dejea CM, Fathi P, Craig JM. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 2018; 359: 592-597
  • 80 Geller LT, Barzily-Rokni M, Danino T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017; 357: 1156-1160
  • 81 Jin C, Lagoudas GK, Zhao C. et al. Commensal microbiota promote lung cancer development via γδ T Cells. Cell 2019; 176: 998-1013 e16
  • 82 Ma C, Han M, Heinrich B. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018; 360 DOI: 10.1126/science.aan5931.
  • 83 Matson V, Fessler J, Bao R. et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 2018; 359: 104-108 DOI: 10.1126/science.aao3290.
  • 84 Meisel M, Hinterleitner R, Pacis A. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 2018; 557: 580-584 DOI: 10.1038/s41586-018-0125-z.
  • 85 Ye H, Adane B, Khan N. et al. Subversion of systemic glucose metabolism as a mechanism to support the growth of leukemia cells. Cancer Cell 2018; 34: 659-673 e6
  • 86 Mikkelsen KH, Knop FK, Frost M. et al. Use of antibiotics and risk of type 2 diabetes: A population-based case-control study. J Clin Endocrinol Metab 2015; 100: 3633-3640
  • 87 Scott FI, Horton DB, Mamtani R. et al. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology 2016; 151: 120-129 e5
  • 88 Wernroth M-L, Fall K, Svennblad B. et al. Early childhood antibiotic treatment for otitis media and other respiratory tract infections is associated with risk of type 1 diabetes: A nationwide register-based study with sibling analysis. Diabetes Care 2020; 43: 991-999
  • 89 Miao Z, Cheng R, Zhang Y. et al. Antibiotics can cause weight loss by impairing gut microbiota in mice and the potent benefits of lactobacilli. Biosci Biotechnol Biochem 2020; 84: 411-420
  • 90 Manfredo VS, Hiltensperger M, Kumar V. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018; 359: 1156-1161
  • 91 Hamblin MR. Ultraviolet irradiation of blood: “The cure that time forgot”?. Adv Exp Med Biol 2017; 295-309 DOI: 10.1007/978-3-319-56017-5_25.
  • 92 Mattila E, Uusitalo-Seppälä R, Wuorela M. et al. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology 2012; 142: 490-496 DOI: 10.1053/j.gastro.2011.11.037.
  • 93 Savidge T, Spinler J. Faculty opinions recommendation of oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. Faculty Opinions 2015; DOI: 10.3410/f.722182886.793503668.
  • 94 Zhang, Zhang, Mocanu et al. Impact of fecal microbiota transplantation on obesity and metabolic syndrome – A systematic review. Nutrients 2019; 11: 2291 DOI: 10.3390/nu11102291.
  • 95 de Groot P, de Groot P, Scheithauer T. et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 2020; 69: 502-512 DOI: 10.1136/gutjnl-2019-318320.
  • 96 de Groot P, Nikolic T, Pellegrini S. et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut 2021; 70: 92-105
  • 97 DeFilipp Z, Bloom PP, Soto MT. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med 2019; 381: 2043-2050 DOI: 10.1056/nejmoa1910437.
  • 98 Everard A, Belzer C, Geurts L. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 2013; 110: 9066-9071
  • 99 Depommier C, Everard A, Druart C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat Med 2019; 25: 1096-1103
  • 100 Plovier H, Everard A, Druart C. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017; 23: 107-113
  • 101 Vrieze A, Van Nood E, Holleman F. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-916 e7
  • 102 Udayappan S, Manneras-Holm L, Chaplin-Scott A. et al. Oral treatment with improves insulin sensitivity in mice. NPJ Biofilms Microbiomes 2016; 2: 16009
  • 103 Gilijamse PW, Hartstra AV, Levin E. et al. Treatment with Anaerobutyricum soehngenii: A pilot study of safety and dose–response effects on glucose metabolism in human subjects with metabolic syndrome. NPJ Biofilms Microbiomes 2020; 6: 16 DOI: 10.1038/s41522-020-0127-0.
  • 104 Koh A, Bäckhed F. From association to causality: The role of the gut microbiota and its functional products on host metabolism. Mol Cell 2020; 78: 584-596
  • 105 Quévrain E, Maubert MA, Michon C. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 2016; 65: 415-425
  • 106 Bui TPN, de Vos WM. Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Pract Res Clin Endocrinol Metab 2021; 35: 101504
  • 107 Broeders EPM, Nascimento EBM, Havekes B. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab 2015; 22: 418-426
  • 108 Kars M, Yang L, Gregor MF. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 2010; 59: 1899-1905 DOI: 10.2337/db10-0308.
  • 109 Sun L, Xie C, Wang G. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018; 24: 1919-1929 DOI: 10.1038/s41591-018-0222-4.
  • 110 Schittenhelm B, Wagner R, Kähny V. et al. Role of FXR in β-cells of lean and obese mice. Endocrinology 2015; 156: 1263-1271
  • 111 Zhang H-M, Wang X, Wu Z-H. et al. Beneficial effect of farnesoid X receptor activation on metabolism in a diabetic rat model. Mol Med Rep 2016; 13: 2135-2142 DOI: 10.3892/mmr.2016.4761.
  • 112 van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol 2021; 29: 700-712
  • 113 de Goffau MC, Luopajärvi K, Knip M. et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 2013; 62: 1238-1244
  • 114 Koh A, De Vadder F, Kovatcheva-Datchary P. et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016; 165: 1332-1345
  • 115 Koh A, Molinaro A, Ståhlman M. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 2018; 175: 947-961 e17
  • 116 Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res 2017; 120 DOI: 10.1161/CIRCRESAHA.117.309715.
  • 117 Lin CJ, Wu V, Wu PC. et al. Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-Cause mortality in patients with chronic renal failure. PLoS ONE 2015; 10 DOI: 10.1371/journal.pone.0132589.
  • 118 Wlodarska M, Luo C, Kolde R. et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe 2017; 22: 25-37 e6
  • 119 Venkatesh M, Mukherjee S, Wang H. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. Immunity 2014; 41: 296-310
  • 120 Singh R, Chandrashekharappa S, Bodduluri SR. et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun 2019; 10: 89
  • 121 Andreux PA, Blanco-Bose W, Ryu D. et al. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat Metab 2019; 1: 595-603
  • 122 Petrosino JF. The microbiome in precision medicine: The way forward. Genome Med 2018; 10: 12
  • 123 Selway CA, Eisenhofer R, Weyrich LS. Microbiome applications for pathology: Challenges of low microbial biomass samples during diagnostic testing. Hip Int 2020; 6: 97-106
  • 124 Salter SJ, Cox MJ, Turek EM. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 2014; 12: 87
  • 125 Lauder AP, Roche AM, Sherrill-Mix S. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 2016; 4 DOI: 10.1186/s40168-016-0172-3.
  • 126 Hassan MM, Ranzoni A, Cooper MA. A nanoparticle-based method for culture-free bacterial DNA enrichment from whole blood. Biosens Bioelectron 2018; 99: 150-155
  • 127 Weiß CL, Gansauge M-T, Aximu-Petri A. et al. Mining ancient microbiomes using selective enrichment of damaged DNA molecules. BMC Genomics 2020; 21: 432
  • 128 Kumar R, Eipers P, Little RB. et al. Getting started with microbiome analysis: Sample acquisition to bioinformatics. Curr Protoc Hum Genet. 2014 82. 18.8.1–29
  • 129 Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Pathol: Mechanisms of disease 2019; 14: 319-338 DOI: 10.1146/annurev-pathmechdis-012418-012751.
  • 130 Eisenhofer R, Minich JJ, Marotz C. et al. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol 2019; 27: 105-117
  • 131 You R, Cui W, Chen C. et al. Measuring the short-term emission rates of particles in the “Personal Cloud” with different clothes and activity intensities in a sealed chamber. Aerosol Air Qual Res 2013; 13: 911-921 DOI: 10.4209/aaqr.2012.03.0061.
  • 132 Minich JJ, Sanders JG, Amir A. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 2019; 4 DOI: 10.1128/mSystems.00186-19.
  • 133 Kelley ST, Gilbert JA. Studying the microbiology of the indoor environment. Genome Biol 2013; 14: 202
  • 134 Tanner MA, Goebel BM, Dojka MA. et al. Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl Environ Microbiol 1998; 64: 3110-3113
  • 135 Chafee M, Maignien L, Simmons SL. The effects of variable sample biomass on comparative metagenomics. Environ Microbiol 2015; 17: 2239-2253
  • 136 Llamas B, Valverde G, Fehren-Schmitz L. et al. From the field to the laboratory: Controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR: Sci Technol Archaeol Res 2017; 3: 1-14 DOI: 10.1080/20548923.2016.1258824.
  • 137 Minich JJ, Zhu Q, Janssen S. et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems 2018; 3 DOI: 10.1128/mSystems.00218-17.
  • 138 Knights D, Kuczynski J, Charlson ES. et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods 2011; 8: 761-763
  • 139 Davis NM, Proctor DM, Holmes SP. et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018; 6: 226
  • 140 Burnham P, Gomez-Lopez N, Heyang M. et al. Separating the signal from the noise in metagenomic cell-free DNA sequencing. Microbiome 2020; 8: 18
  • 141 Dalpke A, Frank J, Peter M. et al. Activation of toll-like receptor 9 by DNA from different bacterial species. Infect Immun 2006; 74: 940-946
  • 142 Bauer S, Kirschning CJ, Häcker H. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 2001; 98: 9237-9242
  • 143 Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 2010; 34: 415-425 DOI: 10.1111/j.1574-6976.2009.00200.x.
  • 144 Emerson JB, Adams RI, Román CMB. et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 2017; 5: 86
  • 145 Rogers GB, Cuthbertson L, Hoffman LR. et al. Reducing bias in bacterial community analysis of lower respiratory infections. ISME J 2013; 7: 697-706
  • 146 Kim SY, Ko G. Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine norovirus. Lett Appl Microbiol 2012; 55: 182-188
  • 147 Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev 1992; 56: 395-411 DOI: 10.1128/mr.56.3.395-411.1992.
  • 148 Selinger DW, Saxena RM, Cheung KJ. et al. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res 2003; 13: 216-223
  • 149 Feezor RJ, Baker HV, Mindrinos M. et al. Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genomics 2004; 19: 247-254
  • 150 Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: Pitfalls and potential. Biotechniques 1999; 26: 112-122 124–125
  • 151 Bustin SA. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J Mol Endocrinol 2002; 29: 23-39
  • 152 Domingue GJ, Schlegel JU. Novel bacterial structures in human blood: Cultural isolation. Infect Immun 1977; 15: 621-627 DOI: 10.1128/iai.15.2.621-627.1977.
  • 153 Rajendhran J, Shankar M, Dinakaran V. et al. Contrasting circulating microbiome in cardiovascular disease patients and healthy individuals. Int J Cardiol 2013; 168: 5118-5120
  • 154 Lelouvier B, Servant F, Païssé S. et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis. Hepatology 2016; 64: 2015-2027
  • 155 Alvarez-Silva C, Schierwagen R, Pohlmann A. et al. Compartmentalization of immune response and microbial translocation in decompensated cirrhosis. Front Immunol 2019; 0 DOI: 10.3389/fimmu.2019.00069.