Subscribe to RSS
DOI: 10.1055/a-1750-9779
Robotische Pankreaschirurgie – Lernkurve und Etablierung
Robotic Pancreatic Surgery – Learning Curve and Implementation
Zusammenfassung
Minimalinvasive Resektionstechniken zur Behandlung verschiedener Pathologien des Pankreas sind potenziell vorteilhaft für die behandelten Patienten in Bezug auf Rekonvaleszenzzeit und postoperative Morbidität, stellen jedoch eine besondere technische Herausforderung für den behandelnden Chirurgen dar. Der Einzug der robotischen Technik in die Viszeralchirurgie bietet eine prinzipielle Möglichkeit zur weitreichenden Verbreitung minimalinvasiver Verfahren in der Pankreaschirurgie.
Ziel dieser Arbeit war es, die Entwicklungsmöglichkeiten der robotischen Pankreaschirurgie in Deutschland zu überprüfen. Datengrundlage sind die Qualitätsberichte der Krankenhäuser der Jahre 2015–2019 kombiniert mit einer selektiven Literaturrecherche.
Die Anzahl der vorliegenden Qualitätsberichte reduzierte sich von 2015 bis 2019 von 1635 auf 1594. Im Median führten 96 Kliniken 11–20, 56 Kliniken 21–50 und 15 Kliniken mehr als 50 Pankreaskopfresektionen jährlich durch. Bei den Linksresektionen waren es 35 Kliniken mit 11–20, 14 Kliniken mit 21–50 und 2 Kliniken mit mehr als 50 Eingriffen. Unter Berücksichtigung aller Kliniken, die 5 oder mehr Linksresektionen pro Jahr durchführen, wurden an nur 29 Kliniken minimalinvasive Verfahren eingesetzt. Der Anteil an laparoskopischen Linksresektionen über 50% wurde an nur 7 Kliniken beschrieben.
Nach Datenlage in der Literatur divergieren die Lernkurven für die robotische Pankreaslinks- und Pankreaskopfresektion. Während die Lernkurve für die robotische Pankreaslinksresektion nach etwa 20 Eingriffen durchlaufen ist, hat die Lernkurve für die robotische Pankreaskopfresektion mehrere Plateaus, die etwa nach 30, 100 und 250 Eingriffen erreicht werden.
Aufgrund der dezentralen Struktur der Pankreaschirurgie in Deutschland scheint ein flächendeckendes Angebot robotischer Verfahren aktuell in weiter Ferne. Insbesondere die Etablierung der robotischen Pankreaskopfresektion wird zunächst Zentren mit entsprechend hoher Fallzahl vorbehalten bleiben.
Abstract
Minimally invasive resection techniques for the treatment of various pathologies of the pancreas are potentially advantageous for the treated patients in terms of restitution time and postoperative morbidity, but are a technical challenge for the responsible surgeon. The introduction of robotic assistance in visceral surgery offers a possibility for further distribution of minimally invasive procedures in pancreatic surgery.
The aim of this study was to examine the possibilities for developing robotic pancreatic surgery in Germany. The data are based on the quality reports of the hospitals for the years 2015–2019 combined with a selective literature search.
The number of quality reports available decreased from 1635 to 1594 between 2015 and 2019. A median of 96 clinics performed 11–20, 56 clinics 21–50 and 15 clinics more than 50 pancreaticoduodenectomies. For distal resections, there were 35 clinics with 11–20, 14 clinics with 21–50 and two clinics with more than 50 procedures. In relation to all clinics with at least five distal resections per year, minimally invasive procedures were performed at only 29 clinics; a ratio to laparoscopic left resections of over 50% was reported in only seven clinics.
According to the literature, the learning curves for robotic pancreatic distal resection and pancreaticoduodenectomy diverge. While the learning curve for robotic distal resection is completed after around 20 procedures, the learning curve for robotic pancreaticoduodenectomy has several plateaus, which are reached after around 30, 100 and 250 procedures.
Due to the decentralised structure of pancreatic surgery in Germany, a nationwide introduction of robotic pancreatic surgery is unlikely. The routine use of robotic pancreaticoduodenectomy will probably be restricted to high volume centres in the foreseeable future.
Schlüsselwörter
Pankreaskopfresektion - Pankreaslinksresektion - Lernkurve - minimal-invasive Chirurgie - robotisch-assistierte ChirurgieKeywords
pancreaticoduodenectomy - distal pancreatectomy - learning curve - minimally-invasive surgery - robot-assisted surgeryPublication History
Received: 21 December 2021
Accepted after revision: 21 January 2022
Article published online:
04 April 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Bausch D, Keck T. Laparoskopische Pankreasresektion. Chirurg 2017; 88: 484-489
- 2 Krüger CM, Rückbeil O, Sebestyen U. et al. DeRAS I – deutsche Situation der robotisch assistierten Chirurgie – eine Online-Survey-Studie. Chirurg 2021; 92: 1107-1113
- 3 Keck T, Wellner UF, Bahra M. et al. Pancreatogastrostomy Versus Pancreatojejunostomy for RECOnstruction After PANCreatoduodenectomy (RECOPANC, DRKS 00000767): Perioperative and Long-term Results of a Multicenter Randomized Controlled Trial. Ann Surg 2016; 263: 440-449
- 4 Deichmann S, Manschikow SG, Petrova E. et al. Evaluation of Postoperative Quality of Life After Pancreatic Surgery and Determination of Influencing Risk Factors. Pancreas 2021; 50: 362-370
- 5 Lyu Y, Cheng Y, Wang B. et al. Comparison of 3 Minimally Invasive Methods Versus Open Distal Pancreatectomy: A Systematic Review and Network Meta-Analysis. Surg Laparosc Endosc Percutan Tech 2020; 31: 104-112
- 6 de Rooij T, van Hilst J, van Santvoort H. et al. Minimally Invasive Versus Open Distal Pancreatectomy (LEOPARD): A Multicenter Patient-blinded Randomized Controlled Trial. Ann Surg 2019; 269: 2-9
- 7 Chen S, Chen JZ, Zhan Q. et al. Robot-assisted laparoscopic versus open pancreaticoduodenectomy: A prospective, matched, mid-term follow-up study. Surg Endosc 2015; 29: 3698-3711
- 8 Nassour I, Paniccia A, Moser AJ. et al. Minimally Invasive Techniques for Pancreatic Resection. Surg Oncol Clin N Am 2021; 30: 747-758
- 9 Giulianotti PC, Mangano A, Bustos RE. et al. Operative technique in robotic pancreaticoduodenectomy (RPD) at University of Illinois at Chicago (UIC): 17 steps standardized technique : Lessons learned since the first worldwide RPD performed in the year 2001. Surg Endosc 2018; 32: 4329-4336
- 10 Winer J, Can MF, Bartlett DL. et al. The current state of robotic-assisted pancreatic surgery. Nat Rev Gastroenterol Hepatol 2012; 9: 468-476
- 11 Kinny-Köster B, Habib JR, Javed AA. et al. Technical progress in robotic pancreatoduodenectomy: TRIANGLE and periadventitial dissection for retropancreatic nerve plexus resection. Langenbecks Arch Surg 2021; 406: 2527-2534
- 12 Kauffmann EF, Napoli N, Menonna F. et al. A propensity score-matched analysis of robotic versus open pancreatoduodenectomy for pancreatic cancer based on margin status. Surg Endosc 2019; 33: 234-242
- 13 de Rooij T, van Hilst J, Bosscha K. et al. Minimally invasive versus open pancreatoduodenectomy (LEOPARD-2): Study protocol for a randomized controlled trial. Trials 2018; 19: 1
- 14 Watkins AA, Kent TS, Gooding WE. et al. Multicenter outcomes of robotic reconstruction during the early learning curve for minimally-invasive pancreaticoduodenectomy. HPB (Oxford) 2018; 20: 155-165
- 15 Shi Y, Jin J, Qiu W. et al. Short-term Outcomes After Robot-Assisted vs Open Pancreaticoduodenectomy After the Learning Curve. JAMA Surg 2020; 155: 389
- 16 Zureikat AH, Postlewait LM, Liu Y. et al. A Multi-institutional Comparison of Perioperative Outcomes of Robotic and Open Pancreaticoduodenectomy. Ann Surg 2016; 264: 640-649
- 17 Hayashi H, Baba H. Current statement and safe implementation of minimally invasive surgery in the pancreas. Ann Gastroenterol Surg 2020; 4: 505-513
- 18 Vining CC, Skowron KB, Hogg ME. Robotic gastrointestinal surgery: Learning curve, educational programs and outcomes. Updates Surg 2021; 73: 799-814
- 19 Vining CC, Hogg ME. How to train and evaluate minimally invasive pancreas surgery. J Surg Oncol 2020; 122: 41-48
- 20 Ikoma N, Kim MP, Tran Cao HS. et al. Early Experience of a Robotic Foregut Surgery Program at a Cancer Center: Video of Shared Steps in Robotic Pancreatoduodenectomy and Gastrectomy. Ann Surg Oncol 2022; 29: 285
- 21 Thomaschewski M, Zimmermann M, Müller-Debus CF. et al. Robotisch assistierte obere gastrointestinale und hepatopankreatobiliäre Chirurgie: Etablierung durch einen Stepwise Approach und eine Analyse der ersten 100 Operationen. Zentralbl Chir 2020; 145: 234-245
- 22 Mulchandani J, Shetty N, Kulkarni A. et al. Short-term and pathologic outcomes of robotic versus open pancreatoduodenectomy for periampullary and pancreatic head malignancy: An early experience. J Robotic Surg 2021; 10: 1199
- 23 Shakir M, Boone BA, Polanco PM. et al. The learning curve for robotic distal pancreatectomy: An analysis of outcomes of the first 100 consecutive cases at a high-volume pancreatic centre. HPB (Oxford) 2015; 17: 580-586
- 24 Napoli N, Kauffmann EF, Perrone VG. et al. The learning curve in robotic distal pancreatectomy. Updates Surg 2015; 67: 257-264
- 25 Goh BKP, Kabir T, Koh YX. et al. Critical Appraisal of the Impact of Individual Surgeon Experience on the Outcomes of Minimally Invasive Distal Pancreatectomies: Collective Experience of Multiple Surgeons at a Single Institution. Surg Laparosc Endosc Percutan Tech 2020; 30: 361-366
- 26 Al Abbas AI, Wang C, Hamad AB. et al. Mentorship and formal robotic proficiency skills curriculum improve subsequent generations’ learning curve for the robotic distal pancreatectomy. HPB (Oxford) 2021; 23: 1849-1855
- 27 Al Abbas AI, Zeh Iii HJ, Polanco PM. State of the art robotic distal pancreatectomy: A review of the literature. Updates Surg 2021; 73: 881-891
- 28 Shyr BU, Chen SC, Shyr YM. et al. Learning curves for robotic pancreatic surgery-from distal pancreatectomy to pancreaticoduodenectomy. Medicine (Baltimore) 2018; 97: e13000
- 29 Kim HS, Park JS, Yoon DS. True learning curve of laparoscopic spleen-preserving distal pancreatectomy with splenic vessel preservation. Surg Endosc 2019; 33: 88-93
- 30 Tseng JF, Pisters PWT, Lee JE. et al. The learning curve in pancreatic surgery. Surgery 2007; 141: 694-701
- 31 Napoli N, Kauffmann EF, Vistoli F. et al. State of the art of robotic pancreatoduodenectomy. Updates Surg 2021; 73: 873-880
- 32 Boone BA, Zenati M, Hogg ME. et al. Assessment of quality outcomes for robotic pancreaticoduodenectomy: Identification of the learning curve. JAMA Surg 2015; 150: 416-422
- 33 Marino MV, Podda M, Pisanu A. et al. Robotic-assisted Pancreaticoduodenectomy: Technique Description and Performance Evaluation After 60 Cases. Surg Laparosc Endosc Percutan Tech 2020; 30: 156-163
- 34 Zhang T, Zhao ZM, Gao YX. et al. The learning curve for a surgeon in robot-assisted laparoscopic pancreaticoduodenectomy: A retrospective study in a high-volume pancreatic center. Surg Endosc 2019; 33: 2927-2933
- 35 Shi Y, Wang W, Qiu W. et al. Learning Curve From 450 Cases of Robot-Assisted Pancreaticoduocectomy in a High-Volume Pancreatic Center. Ann Surg 2021; 274: e1277-e1283
- 36 Kim H, Park SY, Park Y. et al. Assessment of learning curve and oncologic feasibility of robotic pancreaticoduodenectomy: A propensity score-based comparison with open approach. J Hepatobiliary Pancreat Sci 2020;
- 37 Zwart MJW, Nota CLM, de Rooij T. et al. Outcomes of a Multicenter Training Program in Robotic Pancreatoduodenectomy (LAELAPS-3). Ann Surg 2021;
- 38 Rice MK, Hodges JC, Bellon J. et al. Association of Mentorship and a Formal Robotic Proficiency Skills Curriculum With Subsequent Generations’ Learning Curve and Safety for Robotic Pancreaticoduodenectomy. JAMA Surg 2020; 155: 607-615
- 39 Beane JD, Zenati M, Hamad A. et al. Robotic pancreatoduodenectomy with vascular resection: Outcomes and learning curve. Surgery 2019; 166: 8-14
- 40 Weng Y, Chen M, Gemenetzis G. et al. Robotic-assisted versus open total pancreatectomy: A propensity score-matched study. Hepatobiliary Surg Nutr 2020; 9: 759-770
- 41 Schlegel C, Zureikat AH. The Role of Simulation in Attaining Proficiency in Minimally Invasive Hepatopancreatobiliary Surgery. J Laparoendosc Adv Surg Tech A 2021; 31: 561-564
- 42 Schmidt CR, Harris BR, Musgrove KA. et al. Formal robotic training diminishes the learning curve for robotic pancreatoduodenectomy: Implications for new programs in complex robotic surgery. J Surg Oncol 2021; 123: 375-380
- 43 Chan KS, Wang ZK, Syn N. et al. Learning curve of laparoscopic and robotic pancreas resections: A systematic review. Surgery 2021; 170: 194-206
- 44 Tyutyunnik P, Klompmaker S, Lombardo C. et al. Learning curve of three European centers in laparoscopic, hybrid laparoscopic, and robotic pancreatoduodenectomy. Surg Endosc 2021;
- 45 Kim H, Choi SH, Jang JY. et al. Multicenter comparison of totally laparoscopic and totally robotic pancreaticoduodenectomy: Propensity score and learning curve-matching analyses. J Hepatobiliary Pancreat Sci 2021;
- 46 Goh BKP, Low TY, Kam JH. et al. Initial experience with laparoscopic and robotic surgery for the treatment of periampullary tumours: Single institution experience with the first 30 consecutive cases. ANZ J Surg 2019; 89: E137-E141
- 47 Stoffels B, Glowka TR, von Websky MW. et al. Roboterassistierte Operationen in der Viszeralchirurgie. Chirurg 2020; 91: 190-194
- 48 Jones LR, Zwart MJW, Molenaar IQ. et al. Robotic Pancreatoduodenectomy: Patient Selection, Volume Criteria, and Training Programs. Scand J Surg 2020; 109: 29-33
- 49 Moekotte AL, Rawashdeh A, Asbun HJ. et al. Safe implementation of minimally invasive pancreas resection: A systematic review. HPB (Oxford) 2020; 22: 637-648
- 50 Chao YJ, Liao TK, Su PJ. et al. Impact of body mass index on the early experience of robotic pancreaticoduodenectomy. Updates Surg 2021; 73: 929-937
- 51 Hogg ME, Besselink MG, Clavien P-A. et al. Training in Minimally Invasive Pancreatic Resections: A paradigm shift away from “See one, Do one, Teach one”. HPB (Oxford) 2017; 19: 234-245