Synthesis 2022; 54(11): 2635-2646
DOI: 10.1055/a-1742-2736
paper

δ-Keto Aminoacrylonitriles and δ-Keto Aminoenones from 1-Pyrrolines, Cyanoacetylenes, and Acetylenic Ketones

Ludmila A. Oparina
a   A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
,
Anastasiya G. Mal’kina
a   A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
,
Nikita A. Kolyvanov
a   A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
,
Igor A. Ushakov
a   A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
,
Ivan V. Saliy
a   A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
,
Konstantin A. Apartsin
b   Biomedical Research and Technology Department of the Irkutsk Scientific Center, Siberian Branch, Russian Academy of Sciences, 134 Lermontov Str., 664033 Irkutsk, Russian Federation
,
Boris A. Trofimov
a   A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation
› Author Affiliations
This work was carried out with the financial support from the Ministry of Science and Higher Education of the Russian Federation (No. AAAA-A16-116112510005-7).


Abstract

The ring-opening/functionalization of 1-pyrrolines by cyano­acetylenes or acetylenic ketones (20–80 °C, MeCN, H2O) affords δ-keto aminoacrylonitriles and δ-keto aminoenones, mostly as the Z-isomers, in up to 85% yields. The synthesis involves C(2)–N bond cleavage in the intermediate hemiaminal resulting from the intermediate 1,3(4)-dipolar 1-pyrroline/acetylene complexes and water.

Supporting Information



Publication History

Received: 09 December 2021

Accepted after revision: 17 January 2022

Publication Date:
17 January 2022 (online)

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Bondock S, Tarhoni AE.-G, Fadda AA. Curr. Org. Chem. 2011; 15: 753
    • 1b Fadda AA, El-Mekabaty A, Elattar KM. Synth. Commun. 2013; 43: 2685
    • 1c El-Agrody AM, Afifi TH. Heterocycles 2014; 89: 1557
    • 2a Smirnova YV, Krasnaya ZA. Russ. Chem. Rev. 2000; 69: 1021
    • 2b Elassar A.-ZA, El-Khair AA. Tetrahedron 2003; 59: 8463
    • 2c Stanovnik B, Svete J. Chem. Rev. 2004; 104: 2433
    • 2d Al-Zaydi KM, Nhari LM. Orient. J. Chem. 2006; 22: 38808
    • 2e Arshadi S, Vessally E, Edjlali L, Ghorbani-Kalhorb E, Hosseinzadeh-Khanmiri R. RSC Adv. 2017; 7: 13198
  • 3 For references, see a recent review: Sobenina LN, Sagitova EF, Petrova OV, Trofimov BA. Mendeleev Commun. 2021; 31: 573
    • 4a Xiao Z.-P, Xue J.-Y, Tan S.-H, Li H.-Q, Zhu H.-L. Bioorg. Med. Chem. 2007; 15: 4212
    • 4b Xiao Z.-P, Fang R.-Q, Li H.-Q, Xue J.-Y, Zheng Y, Zhu H.-L. Eur. J. Med. Chem. 2008; 43: 1828
    • 5a Edafiogho IO, Hinko CN, Chang H, Moore JA, Mulzac D, Nicholson JM, Scott KR. J. Med. Chem. 1992; 35: 2798
    • 5b Foster JE, Nicholson JM, Butcher R, Stables JP, Edafiogho IO, Goodwin AM, Henson MC, Smith CA, Scott KR. Bioorg. Med. Chem. 1999; 7: 2415
    • 5c Eddington ND, Cox DS, Roberts RR, Stables JP, Powell CB, Scott KR. Curr. Med. Chem. 2000; 7: 417
    • 5d Edafiogho IO, Kombian SB, Ananthalakshmi KV, Salama NN, Eddington ND, Wilson TL, Alexander MS, Jackson PL, Hanson CD, Scott KR. J. Pharm. Sci. 2007; 96: 2509
    • 5e Fang Y, Kirkland J, Amaye IJ, Jackson-Ayotunde P, George MJr. Open J. Phys. Chem. 2019; 9: 241
    • 6a El-Hashim A, Yousefi S, Edafiogho I, Raghupathy R, Yousif M, Simon HU. Eur. J. Pharmacol. 2010; 632: 73
    • 6b El-Hashim AZ, Edafiogho IO, Jaffal SM, Yousif MH, Ezeamuzie CI, Kombian SB. Life Sci. 2011; 89: 378
    • 6c Khajah MA, Ananthalakshmi KV, Edafiogho IO. PLoS One 2016; e0168567
  • 7 Li X, Du Y, Liang Z, Li X, Pan Y, Zhao K. Org. Lett. 2009; 11: 2643
    • 8a Weng J, Chen Y, Yue B, Xu M, Jin H. Eur. J. Org. Chem. 2015; 3164
    • 8b Gao P, Wang J, Bai Z.-J, Shen L, Yan Y.-Y, Yang D.-S, Fan M.-J, Guan Z.-H. Org. Lett. 2016; 18: 6074
  • 9 Nguyen HH, Kurth MJ. Org. Lett. 2013; 15: 362
  • 10 Chen J, Properzi R, Uccello DP, Young JA, Dushin RG, Starr JT. Org. Lett. 2014; 16: 4146
  • 11 Yugandar S, Konda S, Parameshwarappa G, Ila H. J. Org. Chem. 2016; 81: 5606
  • 12 Cheng G, Weng Y, Yang X, Cui X. Org. Lett. 2015; 17: 3790
  • 13 Fañanás FJ, Arto T, Mendoza A, Rodríguez F. Org. Lett. 2011; 13: 4184
  • 14 Li Y, Zhu Y, Xiang S, Fan W, Jin J, Huang D. RSC Adv. 2020; 10: 6576
  • 15 Alnajjar A, Abdelkhalik MM, Al-Enezi A, Elnagdi MH. Molecules 2009; 14: 68
  • 16 Kharrat SE, Laurent P, Blancou H. Tetrahedron 2014; 70: 1252
    • 17a Madkour HM. F, Afify AA. E, Abdalha AA, Elsayed GA, Salem MS. Phosphorus, Sulfur Silicon Relat. Elem. 2009; 184: 719
    • 17b Khalil MA, Sayed SM, Raslan MA. Am. J. Org. Chem. 2012; 2: 171
    • 17c Fadda AA, Elattar KM. J. Heterocycl. Chem. 2014; 51: 1697
    • 17d El-Sayed R, Althagafi I. J. Oleo Sci. 2016; 65: 177
    • 17e Elziaty AK, Bassioni G, Hassan AM. A, Derbala HA, Abdel-Aziz MS. J. Chem. 2016; 5286462
    • 17f El-Shahawi MM, El-Ziaty AK. J. Chem. 2017; 5610707
    • 19a Dannhardt G, Kiefer W. Arch. Pharm. Pharm. Med. Chem. 2001; 334: 183
    • 19b Shvekhgeimer M.-GA. Chem. Heterocycl. Compd. 2003; 39: 405
    • 19c Kobayashi S, Mori Y, Fossey JS, Salter MM. Chem. Rev. 2011; 111: 2626
    • 19d Ali Taric E. ARKIVOC 2014; (i): 21
    • 19e Iwanejko J, Wojaczyńska E. Org. Biomol. Chem. 2018; 16: 7296

      For selected examples, see:
    • 20a Cimarelli C, Fratoni D, Mazzanti A, Palmieri G. Eur. J. Org. Chem. 2011; 2094
    • 20b Shmatova OI, Nenajdenko VG. J. Org. Chem. 2013; 78: 9214
    • 20c Xie L.-H, Cheng J, Luo Z.-W, Lu G. Tetrahedron Lett. 2018; 59: 457
    • 20d Speich E, Banfi L, Moni L, Riva R, Rocca V, Basso A. Chem. Heterocycl. Compd. 2018; 54: 329
    • 20e Kutovaya IV, Shmatova OI, Nenajdenko VG. Mendeleev Commun. 2018; 28: 81
    • 20f Voznesenskaia NG, Shmatova OI, Khrustalev VN, Nenajdenko VG. Org. Biomol. Chem. 2018; 16: 7004
    • 20g Shmatova OI, Nenajdenko VG. Mendeleev Commun. 2019; 29: 57
    • 20h Voznesenskaia NG, Shmatova OI, Sosnina AA, Nenajdenko VG. Eur. J. Org. Chem. 2019; 625
    • 20i Kutovaya IV, Zakharova EA, Shmatova OI, Nenajdenko VG. Eur. J. Org. Chem. 2019; 4855
    • 20j Zakharova EA, Kutovaya IV, Shmatova OI, Khrustalev VN, Nenajdenko VG. Org. Biomol. Chem. 2019; 17: 3433
    • 20k Nazeri MT, Farhid H, Mohammadian R, Shaabani A. ACS Comb. Sci. 2020; 22: 361
    • 21a Lie Ken Jie MS. F, Syed Rahmatullah MS. K. Chem. Phys. Lipids 1995; 77: 179
    • 21b Unsworth WP, Kitsiou C, Taylor RJ. K. Org. Lett. 2013; 15: 258
    • 21c Unsworth WP, Coulthard G, Kitsiou C, Taylor RJ. K. J. Org. Chem. 2014; 79: 1368
    • 21d Melyashova AS, Smolobochkin AV, Gazizov AS, Voronina JK, Burilov AR, Pudovik MA. Tetrahedron 2019; 75: 130681
    • 21e Gazizov AS, Smolobochkin AV, Burilov AR, Pudovik MA. Tetrahedron Lett. 2020; 61: 152371
  • 22 Dannhardt G, Obergmsberger R. Arch. Pharm. (Weinheim) 1978; 311: 977
  • 23 Dannhardt G, Obergmsberger R. Arch. Pharm. (Weinheim) 1980; 313: 858
  • 24 Oparina LA, Shabalin DA, Mal’kina AG, Kolyvanov NA, Grishchenko LA, Ushakov IA, Vashchenko AV, Trofimov BA. Eur. J. Org. Chem. 2020; 4181
    • 25a Trofimov BA, Andriyankova LV, Zhivet’ev SA, Mal’kina AG, Voronov VK. Tetrahedron Lett. 2002; 43: 1093
    • 25b Shemyakina OA, Mal’kina AG, Stepanov AV, Volostnykh OG, Ushakov IA, Vashchenko AV. Eur. J. Org. Chem. 2016; 5465
    • 25c Trofimov BA, Belyaeva KV, Andriyankova LV, Nikitina LP, Mal’kina AG. Mendeleev Commun. 2017; 27: 109
    • 25d Shemyakina OA, Volostnykh OG, Stepanov AV, Mal’kina AG, Ushakov IA, Apartsin KA, Kireeva VV, Trofimov BA. Mendeleev Commun. 2018; 28: 128
    • 25e Belyaeva KV, Nikitina LP, Mal’kina AG, Afonin AV, Vashchenko AV, Trofimov BA. J. Org. Chem. 2019; 84: 9726
    • 25f Oparina LA, Kolyvanov NA, Ushakov IA, Mal’kina AG, Vashchenko AV, Trofimov BA. Synthesis 2019; 51: 1445
    • 25g Oparina LA, Shabalin DA, Kolyvanon NA, Ushakov IA, Mal’kina AG, Vashchenko AV, Trofimov BA. Tetrahedron Lett. 2019; 60: 344
    • 25h Trofimov BA, Belyaeva KV. Tetrahedron Lett. 2020; 61: 151991
  • 26 For references, see the recent review: Trofimov BA, Mal’kina AG. Synthesis 2021; 53: 2740
    • 27a Trofimov BA, Stepanova ZV, Sobenina LN, Mikhaleva AI, Ushakov IA. Tetrahedron Lett. 2004; 45: 6513
    • 27b Trofimov BA, Sobenina LN. Targets Heterocycl. Syst. 2009; 13: 92
    • 27c Sobenina LN, Trofimov BA. Molecules 2020; 25: 2490
    • 29a Haslego ML, Maryanoff CA, Scott L, Sorgi KL. Heterocycles 1993; 35: 643
    • 29b Sorgi KL, Maryanoff CA, McCosmey DF, Maryanoff BE. Org. Synth. 2004; 10: 437
  • 30 Peterson S, Tietze E. Chem. Ber. 1957; 90: 909
  • 31 Belyaeva KV, Nikitina LP, Afonin AV, Grishchenko LA, Trofimov BA. J. Org. Chem. 2021; 86: 3800
    • 32a Zanina AS, Shergina SI, Sokolov IE, Myasnikova RN. Russ. Chem. Bull. 1995; 44: 689
    • 32b Zanina AS, Shergina SI, Sokolov IE, Kotlyarevskii II. Bull. Acad. Sci. USSR., Div. Chem. Sci. 1990; 39: 2307
    • 33a Zhang X, Lu Z, Fu C, Ma S. Org. Biomol. Chem. 2009; 7: 3258
    • 33b Whittaker RE, Dermenci A, Dong G. Synthesis 2016; 48: 161