Rofo 2022; 194(07): 720-727
DOI: 10.1055/a-1729-1516
Review

Imaging Biomarkers in Thoracic Oncology: Current Advances in the Use of Radiomics in Lung Cancer Patients and its Potential Use for Therapy Response Prediction and Monitoring

Imaging Biomarker in der Thoraxonkologie: Aktuelle Fortschritte im Einsatz von Radiomics bei Lungenkrebspatienten und die Möglichkeit von Therapievorhersage und Verlaufskontrolle
1   Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
2   Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany
3   Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
,
Oyunbileg von Stackelberg
1   Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
2   Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany
3   Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
,
Claus Peter Heußel
1   Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
2   Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany
3   Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
,
Mark Oliver Wielpütz
1   Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
2   Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany
3   Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
,
Hans-Ulrich Kauczor
1   Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
2   Translational Lung Research Center (TLRC), German Center for Lung Research, Giessen, Germany
3   Department for Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik am Universitätsklinikum Heidelberg, Germany
› Author Affiliations

Abstract

Background Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths. The development of therapies targeting molecular alterations has significantly improved the treatment of NSCLC patients. To identify these targets, tumor phenotyping is required, with tissue biopsies and molecular pathology being the gold standard. Some patients do not respond to targeted therapies and many patients suffer from tumor recurrence, which can in part be explained by tumor heterogeneity. This points out the need for new biomarkers allowing for better tumor phenotyping and monitoring during treatment to assess patient outcome.

Method The contents of this review are based on a literature search conducted using the PubMed database in March 2021 and the authors’ experience.

Results and Conclusion The use of radiomics and artificial intelligence-based approaches allows for the identification of imaging biomarkers in NSCLC patients for tumor phenotyping. Several studies show promising results for models predicting molecular alterations, with the best results being achieved by combining structural and functional imaging. Radiomics could help solve the pressing clinical need for assessing and predicting therapy response. To reach this goal, advanced tumor phenotyping, considering tumor heterogeneity, is required. This could be achieved by integrating structural and functional imaging biomarkers with clinical data sources, such as liquid biopsy results. However, to allow for radiomics-based approaches to be introduced into clinical practice, further standardization using large, multi-center datasets is required.

Key points:

  • Some NSCLC patients do not benefit from targeted therapies, and many patients suffer from tumor recurrence, pointing out the need for new biomarkers allowing for better tumor phenotyping and monitoring during treatment.

  • The use of radiomics-based approaches allows for the identification of imaging biomarkers in NSCLC patients for tumor phenotyping.

  • A multi-omics approach integrating not only structural and functional imaging biomarkers but also clinical data sources, such as liquid biopsy results, could further enhance the prediction and assessment of therapy response.

Citation Format

  • Kroschke J, von Stackelberg O, Heußel CP et al. Imaging Biomarkers in Thoracic Oncology: Current Advances in the Use of Radiomics in Lung Cancer Patients and its Potential Use for Therapy Response Prediction and Monitoring. Fortschr Röntgenstr 2022; 194: 720 – 727

Zusammenfassung

Hintergrund Nichtkleinzelliger Lungenkrebs ist die häufigste Krebstodesursache. Durch die Entwicklung neuer gezielter Therapien konnten erhebliche Fortschritte in der Behandlung von Lungenkrebspatienten erzielt werden. Gewebebiopsien und molekulare Pathologie sind der Goldstandard zur Identifikation der molekularen Therapieziele. Nicht alle Patienten profitieren von diesen neuen Therapieformen und viele Patienten leiden an Rezidiven, was z. T. durch die Tumorheterogenität erklärt werden kann. Die Identifikation weiterer Biomarker ist nötig, um das Therapieansprechen besser beurteilen zu können.

Methode Der Inhalt dieser Übersichtarbeit basiert auf einer Literaturrecherche in PubMed aus dem März 2021 und den Erfahrungen der Autoren.

Ergebnisse und Schlussfolgerung Mithilfe von Radiomics und maschinellem Lernen können Bildgebungsbiomarker zur Tumorphänotypisierung bei Lungenkrebspatienten identifiziert werden. Einige Studien zeigen gute Ergebnisse der Prädiktionsmodelle für das Vorliegen verschiedener molekularer Alterationen, wobei die Verwendung von struktureller und funktionaler Bildgebung die besten Ergebnisse liefert. Durch die Integration struktureller und funktionaler Bildgebung mit weiteren klinischen Datenquellen, wie den Ergebnissen von liquid biopsies, könnte Radiomics ein Lösungsansatz für die klinische Notwendigkeit zur besseren Beurteilung des Therapieverlaufs sein. Damit Radiomics-Ansätze Einzug in die klinische Routine halten können, sind weitere Studien mit großen, multizentrischen Datensätzen zur Validierung nötig.

Kernaussagen:

  • Nicht alle Patienten mit nichtkleinzelligem Lungenkrebs profitieren von gezielten Therapien und viele Patienten entwickeln Rezidive, was die Notwendigkeit der Identifikation neuer Biomarker zur besseren Phänotypisierung und Verlaufskontrolle von Tumoren aufzeigt.

  • Mithilfe von Radiomics können Bildgebungsbiomarker zur Tumorphänotypisierung bei Lungenkrebspatienten identifiziert werden.

  • Durch die Integration struktureller und funktionaler Bildgebung mit weiteren klinischen Datenquellen, wie den Ergebnissen von liquid biopsies, könnte Radiomics ein Lösungsansatz für die klinische Notwendigkeit zur besseren Beurteilung des Therapieverlaufs sein.



Publication History

Received: 30 April 2021

Accepted: 20 December 2021

Article published online:
24 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literature

  • 1 Sung H, Ferlay J, Siegel RL. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-249
  • 2 Gerber DE, Gandhi L, Costa DB. Management and future directions in non-small cell lung cancer with known activating mutations. Am Soc Clin Oncol Educ Book 2014; e353-e365
  • 3 Howlader NNA, Krapcho M, Miller D. et al. (eds) SEER Cancer Statistics Review, 1975-2017, National Cancer Institute. 2020 [Available from: https://seer.cancer.gov/csr/1975_2017/
  • 4 Postmus PE, Kerr KM, Oudkerk M. et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017; 28 (Suppl. 04) iv1-iv21
  • 5 Villalobos P, Wistuba II. Lung Cancer Biomarkers. Hematol Oncol Clin North Am 2017; 31: 13-29
  • 6 Hanna N, Johnson D, Temin S. et al. Systemic Therapy for Stage IV Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Clin Oncol 2017; 35: 3484-3515
  • 7 Girard N. Optimizing outcomes in EGFR mutation-positive NSCLC: which tyrosine kinase inhibitor and when?. Future Oncol 2018; 14: 1117-1132
  • 8 Shaw AT, Yeap BY, Mino-Kenudson M. et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 2009; 27: 4247-4253
  • 9 Rosell R, Carcereny E, Gervais R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. The Lancet Oncology 2012; 13: 239-246
  • 10 Maemondo M, Inoue A, Kobayashi K. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362: 2380-2388
  • 11 Solomon BJ, Mok T, Kim DW. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 2014; 371: 2167-2177
  • 12 Peters S, Camidge DR, Shaw AT. et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med 2017; 377: 829-838
  • 13 Sorber L, Zwaenepoel K, Deschoolmeester V. et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer 2017; 107: 100-107
  • 14 Coroller TP, Bi WL, Huynh E. et al. Radiographic prediction of meningioma grade by semantic and radiomic features. PloS one 2017; 12: e0187908
  • 15 Litière S, Collette S, de Vries EG. et al. RECIST – learning from the past to build the future. Nat Rev Clin Oncol 2017; 14: 187-192
  • 16 Aerts HJ, Velazquez ER, Leijenaar RT. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5: 4006
  • 17 Court LE, Rao A, Krishnan S. Radiomics in cancer diagnosis, cancer staging, and prediction of response to treatment. Translational Cancer Research 2016; 5: 337-339
  • 18 Avanzo M, Stancanello J, El Naqa I. Beyond imaging: The promise of radiomics. Phys Med 2017; 38: 122-139
  • 19 van Velden FH, Kramer GM, Frings V. et al. Repeatability of Radiomic Features in Non-Small-Cell Lung Cancer [(18)F]FDG-PET/CT Studies: Impact of Reconstruction and Delineation. Mol Imaging Biol 2016; 18: 788-795
  • 20 Da-Ano R, Visvikis D, Hatt M. Harmonization strategies for multicenter radiomics investigations. Phys Med Biol 2020; 65: 24tr02
  • 21 Shinohara RT, Sweeney EM, Goldsmith J. et al. Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 2014; 6: 9-19
  • 22 Rios Velazquez E, Aerts HJWL, Gu Y. et al. A semiautomatic CT-based ensemble segmentation of lung tumors: Comparison with oncologists’ delineations and with the surgical specimen. Radiotherapy and Oncology 2012; 105: 167-173
  • 23 Parmar C, Grossmann P, Bussink J. et al. Machine Learning methods for Quantitative Radiomic Biomarkers. Scientific reports 2015; 5: 13087
  • 24 Mayerhoefer ME, Materka A, Langs G. et al. Introduction to Radiomics. Journal of Nuclear Medicine 2020; DOI: 10.2967/jnumed.118.222893.
  • 25 Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003; 3: 1157-1182
  • 26 Parmar C, Grossmann P, Rietveld D. et al. Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Frontiers in oncology 2015; 5: 272
  • 27 Leger S, Zwanenburg A, Pilz K. et al. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Scientific reports 2017; 7: 13206
  • 28 Langs G, Röhrich S, Hofmanninger J. et al. Machine learning: from radiomics to discovery and routine. Radiologe 2018; 58 (Suppl. 01) 1-6
  • 29 Ninatti G, Kirienko M, Neri E. et al. Imaging-Based Prediction of Molecular Therapy Targets in NSCLC by Radiogenomics and AI Approaches: A Systematic Review. Diagnostics (Basel) 2020; 10: 6
  • 30 Wu G, Jochems A, Refaee T. et al. Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging 2021; 48: 3961-3974
  • 31 Planchard D, Popat S, Kerr K. et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2018; 29: iv192-iv237
  • 32 Lo Gullo R, Daimiel I, Morris EA. et al. Combining molecular and imaging metrics in cancer: radiogenomics. Insights Imaging 2020; 11: 1
  • 33 Zhao W, Wu Y, Xu Yn. et al. The Potenzial of Radiomics Nomogram in Non-invasively Prediction of Epidermal Growth Factor Receptor Mutation Status and Subtypes in Lung Adenocarcinoma. Frontiers in oncology 2020; 9: 1485
  • 34 Jiang M, Zhang Y, Xu J. et al. Assessing EGFR gene mutation status in non-small cell lung cancer with imaging features from PET/CT. Nucl Med Commun 2019; 40: 842-849
  • 35 Yamamoto S, Korn RL, Oklu R. et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology 2014; 272: 568-576
  • 36 Jiang M, Sun D, Guo Y. et al. Assessing PD-L1 Expression Level by Radiomic Features From PET/CT in Nonsmall Cell Lung Cancer Patients: An Initial Result. Acad Radiol 2020; 27: 171-179
  • 37 Lin JJ, Riely GJ, Shaw AT. Targeting ALK: Precision Medicine Takes on Drug Resistance. Cancer Discov 2017; 7: 137-155
  • 38 Westover D, Zugazagoitia J, Cho BC. et al. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol 2018; 29 (Suppl. 01) i10-i19
  • 39 Lee G, Lee HY, Park H. et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art. Eur J Radiol 2017; 86: 297-307
  • 40 Motoi N, Szoke J, Riely GJ. et al. Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol 2008; 32: 810-827
  • 41 Voigt W, Manegold C, Pilz L. et al. Beyond tissue biopsy: a diagnostic framework to address tumor heterogeneity in lung cancer. Curr Opin Oncol 2020; 32: 68-77
  • 42 Oser MG, Niederst MJ, Sequist LV. et al. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. The Lancet Oncology 2015; 16: e165-e172
  • 43 Gerlinger M, Rowan AJ, Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883-892
  • 44 Avanzo M, Stancanello J, Pirrone G. et al. Radiomics and deep learning in lung cancer. Strahlenther Onkol 2020; 196: 879-887
  • 45 Xu Y, Hosny A, Zeleznik R. et al. Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging. Clinical cancer research : an official journal of the American Association for Cancer Research 2019; 25: 3266-3275
  • 46 Mu W, Tunali I, Gray JE. et al. Radiomics of (18)F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur J Nucl Med Mol Imaging 2020; 47: 1168-1182
  • 47 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016; 278: 563-577
  • 48 Janke F, Bozorgmehr F, Wrenger S. et al. Novel Liquid Biomarker Panels for A Very Early Response Capturing of NSCLC Therapies in Advanced Stages. Cancers (Basel) 2020; 12: 4
  • 49 Cucchiara F, Del Re M, Valleggi S. et al. Integrating Liquid Biopsy and Radiomics to Monitor Clonal Heterogeneity of EGFR-Positive Non-Small Cell Lung Cancer. Frontiers in oncology 2020; 10: 2664