Thromb Haemost 2022; 122(08): 1265-1278
DOI: 10.1055/a-1719-5584
Review Article

The Story of the Fibrin(ogen) αC-Domains: Evolution of Our View on Their Structure and Interactions

Leonid Medved
1   Center for Vascular and Inflammatory Diseases and the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
,
John W. Weisel
2   Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
› Author Affiliations
Funding This work was supported by National Institutes of Health grants HL056051 to L.M., and HL030954, HL148227, and P01-HL40387 to J.W.W.

Abstract

Although much has been established concerning the overall structure and function of fibrinogen, much less has been known about its two αC regions, each consisting of an αC-connector and an αC-domain, but new information has been accumulating. This review summarizes the state of our current knowledge of the structure and interactions of fibrinogen's αC regions. A series of studies with isolated αC regions and their fragments demonstrated that the αC-domain forms compact ordered structures consisting of N- and C-terminal subdomains including β sheets and suggested that the αC-connector has a poly(L-proline) type II structure. Functionally, the αC-domains interact intramolecularly with each other and with the central region of the molecule, first demonstrated by electron microscopy and then quantified by optical trap force spectroscopy. Upon conversion of fibrinogen into fibrin, the αC-domains switch from intra- to intermolecular interactions to form ordered αC polymers. The formation of αC polymers occurs mainly through the homophilic interaction between the N-terminal subdomains; interaction between the C-terminal subdomains and the αC-connectors also contributes to this process. Considerable evidence supports the idea that the αC-regions accelerate fibrin polymerization and affect the final structure of fibrin clots. The interactions between αC-regions are important for the mechanical properties of clots, increasing their stiffness and extensibility. Conversion of fibrinogen into fibrin results in exposure of multiple binding sites in its αC regions, providing interaction of fibrin with different proteins and cell types during hemostasis and wound healing. This heretofore mysterious part of the fibrinogen molecule is finally giving up its secrets.



Publication History

Received: 16 September 2021

Accepted: 09 December 2021

Accepted Manuscript online:
13 December 2021

Article published online:
08 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Weisel JW, Medved L. The structure and function of the α C domains of fibrinogen. Ann N Y Acad Sci 2001; 936: 312-327
  • 2 Soria J, Mirshahi S, Mirshahi SQ. et al. Fibrinogen αC domain: its importance in physiopathology. Res Pract Thromb Haemost 2019; 3 (02) 173-183
  • 3 Medved L, Weisel JW. Fibrinogen and Factor XIII Subcommittee of Scientific Standardization Committee of International Society on Thrombosis and Haemostasis. Recommendations for nomenclature on fibrinogen and fibrin. J Thromb Haemost 2009; 7 (02) 355-359
  • 4 Hall CE, Slayter HS. The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol 1959; 5 (01) 11-16
  • 5 Mosesson MW, Hainfeld J, Wall J, Haschemeyer RH. Identification and mass analysis of human fibrinogen molecules and their domains by scanning transmission electron microscopy. J Mol Biol 1981; 153 (03) 695-718
  • 6 Slayter HS. Electron microscopic studies of fibrinogen structure: historical perspectives and recent experiments. Ann N Y Acad Sci 1983; 408: 131-145
  • 7 Williams RC. Morphology of fibrinogen monomers and of fibrin protofibrils. Ann N Y Acad Sci 1983; 408: 180-193
  • 8 Erickson HP, Fowler WE. Electron microscopy of fibrinogen, its plasmic fragments and small polymers. Ann N Y Acad Sci 1983; 408: 146-163
  • 9 Weisel JW, Stauffacher CV, Bullitt E, Cohen C. A model for fibrinogen: domains and sequence. Science 1985; 230 (4732): 1388-1391
  • 10 Privalov PL, Medved LV. Domains in the fibrinogen molecule. J Mol Biol 1982; 159 (04) 665-683
  • 11 Medved LV, Gorkun OV, Privalov PL. Structural organization of C-terminal parts of fibrinogen A α-chains. FEBS Lett 1983; 160 (1–2): 291-295
  • 12 Medved L, Litvinovich S, Ugarova T, Matsuka Y, Ingham K. Domain structure and functional activity of the recombinant human fibrinogen γ-module (γ148-411). Biochemistry 1997; 36 (15) 4685-4693
  • 13 Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997; 389 (6650): 455-462
  • 14 Madrazo J, Brown JH, Litvinovich S. et al. Crystal structure of the central region of bovine fibrinogen (E5 fragment) at 1.4-A resolution. Proc Natl Acad Sci U S A 2001; 98 (21) 11967-11972
  • 15 Pechik I, Madrazo J, Mosesson MW, Hernandez I, Gilliland GL, Medved L. Crystal structure of the complex between thrombin and the central “E” region of fibrin. Proc Natl Acad Sci U S A 2004; 101 (09) 2718-2723
  • 16 Yang Z, Mochalkin I, Veerapandian L, Riley M, Doolittle RF. Crystal structure of native chicken fibrinogen at 5.5-A resolution. Proc Natl Acad Sci U S A 2000; 97 (08) 3907-3912
  • 17 Yang Z, Kollman JM, Pandi L, Doolittle RF. Crystal structure of native chicken fibrinogen at 2.7 A resolution. Biochemistry 2001; 40 (42) 12515-12523
  • 18 Brown JH, Volkmann N, Jun G, Henschen-Edman AH, Cohen C. The crystal structure of modified bovine fibrinogen. Proc Natl Acad Sci U S A 2000; 97 (01) 85-90
  • 19 Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry 2009; 48 (18) 3877-3886
  • 20 Doolittle RF. Structural aspects of the fibrinogen to fibrin conversion. Adv Protein Chem 1973; 27: 1-109
  • 21 Veklich YI, Gorkun OV, Medved LV, Nieuwenhuizen W, Weisel JW. Carboxyl-terminal portions of the α chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated α C fragments on polymerization. J Biol Chem 1993; 268 (18) 13577-13585
  • 22 Procyk R, Medved L, Engelke KJ, Kudryk B, Blombäck B. Nonclottable fibrin obtained from partially reduced fibrinogen: characterization and tissue plasminogen activator stimulation. Biochemistry 1992; 31 (08) 2273-2278
  • 23 Tsurupa G, Tsonev L, Medved L. Structural organization of the fibrin(ogen) α C-domain. Biochemistry 2002; 41 (20) 6449-6459
  • 24 Mosesson MW. Fibrinogen heterogeneity. Ann N Y Acad Sci 1983; 408: 97-113
  • 25 Henschen A, McDonagh J. Fibrinogen, fibrin and factor XIII. In: Zwaal RFA, Hemker HC. eds. Blood Coagulation. Amsterdam: Elsevier Science Publishers; 1986: 171-241
  • 26 Gorkun OV, Veklich YI, Medved LV, Henschen AH, Weisel JW. Role of the α C domains of fibrin in clot formation. Biochemistry 1994; 33 (22) 6986-6997
  • 27 Rudchenko S, Trakht I, Sobel JH. Comparative structural and functional features of the human fibrinogen α C domain and the isolated α C fragment. Characterization using monoclonal antibodies to defined COOH-terminal A α chain regions. J Biol Chem 1996; 271 (05) 2523-2530
  • 28 Matsuka YV, Medved LV, Migliorini MM, Ingham KC. Factor XIIIa-catalyzed cross-linking of recombinant α C fragments of human fibrinogen. Biochemistry 1996; 35 (18) 5810-5816
  • 29 Protopopova AD, Barinov NA, Zavyalova EG, Kopylov AM, Sergienko VI, Klinov DV. Visualization of fibrinogen αC regions and their arrangement during fibrin network formation by high-resolution AFM. J Thromb Haemost 2015; 13 (04) 570-579
  • 30 Medved' LV, Gorkun OV, Manyakov VF, Belitser VA. The role of fibrinogen α C-domains in the fibrin assembly process. FEBS Lett 1985; 181 (01) 109-112
  • 31 Murakawa M, Okamura T, Kamura T, Shibuya T, Harada M, Niho Y. Diversity of primary structures of the carboxy-terminal regions of mammalian fibrinogen A α-chains. Characterization of the partial nucleotide and deduced amino acid sequences in five mammalian species; rhesus monkey, pig, dog, mouse and Syrian hamster. Thromb Haemost 1993; 69 (04) 351-360
  • 32 Williamson MP. The structure and function of proline-rich regions in proteins. Biochem J 1994; 297 (Pt 2): 249-260
  • 33 Makarov AA, Lobachov VM, Adzhubei IA, Esipova NG. Natural polypeptides in left-handed helical conformation. A circular dichroism study of the linker histones' C-terminal fragments and β-endorphin. FEBS Lett 1992; 306 (01) 63-65
  • 34 Sreerama N, Woody RW. Poly(pro)II helices in globular proteins: identification and circular dichroic analysis. Biochemistry 1994; 33 (33) 10022-10025
  • 35 Lugovskoy EV, Gritsenko PG, Kolesnikova IN, Lugovskaya NE, Komisarenko SV. A neoantigenic determinant in coiled coil region of human fibrin β-chain. Thromb Res 2009; 123 (05) 765-770
  • 36 Doolittle RF. Structural basis of the fibrinogen-fibrin transformation: contributions from X-ray crystallography. Blood Rev 2003; 17 (01) 33-41
  • 37 Doolittle RF, Kollman JM. Natively unfolded regions of the vertebrate fibrinogen molecule. Proteins 2006; 63 (02) 391-397
  • 38 Burton RA, Tsurupa G, Medved L, Tjandra N. Identification of an ordered compact structure within the recombinant bovine fibrinogen alphaC-domain fragment by NMR. Biochemistry 2006; 45 (07) 2257-2266
  • 39 Burton RA, Tsurupa G, Hantgan RR, Tjandra N, Medved L. NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment. Biochemistry 2007; 46 (29) 8550-8560
  • 40 Tsurupa G, Hantgan RR, Burton RA, Pechik I, Tjandra N, Medved L. Structure, stability, and interaction of the fibrin(ogen) alphaC-domains. Biochemistry 2009; 48 (51) 12191-12201
  • 41 Tsurupa G, Mahid A, Veklich Y, Weisel JW, Medved L. Structure, stability, and interaction of fibrin αC-domain polymers. Biochemistry 2011; 50 (37) 8028-8037
  • 42 Tsurupa G, Veklich Y, Hantgan R, Belkin AM, Weisel JW, Medved L. Do the isolated fibrinogen alphaC-domains form ordered oligomers?. Biophys Chem 2004; 112 (2–3): 257-266
  • 43 Litvinov RI, Yakovlev S, Tsurupa G, Gorkun OV, Medved L, Weisel JW. Direct evidence for specific interactions of the fibrinogen alphaC-domains with the central E region and with each other. Biochemistry 2007; 46 (31) 9133-9142
  • 44 McKee PA, Mattock P, Hill RL. Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc Natl Acad Sci U S A 1970; 66 (03) 738-744
  • 45 Schwartz ML, Pizzo SV, Sullivan JB, Hill RL, McKee PA. A comparative study of crosslinked and noncrosslinked fibrin from the major classes of vertebrates. Thromb Diath Haemorrh 1973; 29 (02) 313-338
  • 46 Fretto LJ, McKee PA. Structure of α-polymer from in vitro and in vivo highly cross-linked human fibrin. J Biol Chem 1978; 253 (18) 6614-6622
  • 47 Tsurupa G, Pechik I, Litvinov RI. et al. On the mechanism of αC polymer formation in fibrin. Biochemistry 2012; 51 (12) 2526-2538
  • 48 Zhang C, Kim SH. The anatomy of protein β-sheet topology. J Mol Biol 2000; 299 (04) 1075-1089
  • 49 Bennett MJ, Schlunegger MP, Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci 1995; 4 (12) 2455-2468
  • 50 Jaskólski M. 3D domain swapping, protein oligomerization, and amyloid formation. Acta Biochim Pol 2001; 48 (04) 807-827
  • 51 Liu Y, Eisenberg D. 3D domain swapping: as domains continue to swap. Protein Sci 2002; 11 (06) 1285-1299
  • 52 Bennett MJ, Eisenberg D. The evolving role of 3D domain swapping in proteins. Structure 2004; 12 (08) 1339-1341
  • 53 Cottrell BA, Strong DD, Watt KW, Doolittle RF. Amino acid sequence studies on the α chain of human fibrinogen. Exact location of cross-linking acceptor sites. Biochemistry 1979; 18 (24) 5405-5410
  • 54 Corcoran DH, Ferguson EW, Fretto LJ, McKee PA. Localization of a cross-link donor site in the α-chain of human fibrin. Thromb Res 1980; 19 (06) 883-888
  • 55 Duval C, Profumo A, Aprile A. et al. Fibrinogen αC-regions are not directly involved in fibrin polymerization as evidenced by a “Double-Detroit” recombinant fibrinogen mutant and knobs-mimic peptides. J Thromb Haemost 2020; 18 (04) 802-814
  • 56 Mosesson MW, Alkjaersig N, Sweet B, Sherry S. Human fibrinogen of relatively high solubility. Comparative biophysical, biochemical, and biological studies with fibrinogen of lower solubility. Biochemistry 1967; 6 (10) 3279-3287
  • 57 Ping L, Huang L, Cardinali B, Profumo A, Gorkun OV, Lord ST. Substitution of the human αC region with the analogous chicken domain generates a fibrinogen with severely impaired lateral aggregation: fibrin monomers assemble into protofibrils but protofibrils do not assemble into fibers. Biochemistry 2011; 50 (42) 9066-9075
  • 58 McPherson HR, Duval C, Baker SR. et al. Fibrinogen αC-subregions critically contribute blood clot fibre growth, mechanical stability, and resistance to fibrinolysis. eLife 2021; 10: e68761
  • 59 Protopopova AD, Litvinov RI, Galanakis DK. et al. Morphometric characterization of fibrinogen's αC regions and their role in fibrin self-assembly and molecular organization. Nanoscale 2017; 9 (36) 13707-13716
  • 60 Collet J-P, Veklich Y, Mullin JL, Gorkun OV, Lord ST, Weisel JW. The αC domains of fibrinogen affect the structure of the clot and its physical and biochemical properties. Thromb Haemost 1999; 82: 692
  • 61 Collet J-P, Moen JL, Veklich YI. et al. The alphaC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood 2005; 106 (12) 3824-3830
  • 62 Houser JR, Hudson NE, Ping L. et al. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers. Biophys J 2010; 99 (09) 3038-3047
  • 63 Helms CC, Ariëns RA, Uitte de Willige S, Standeven KF, Guthold M. α-α Cross-links increase fibrin fiber elasticity and stiffness. Biophys J 2012; 102 (01) 168-175
  • 64 Hudson NE, Ding F, Bucay I. et al. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics. Biophys J 2013; 104 (12) 2671-2680
  • 65 Averett RD, Menn B, Lee EH, Helms CC, Barker T, Guthold M. A modular fibrinogen model that captures the stress-strain behavior of fibrin fibers. Biophys J 2012; 103 (07) 1537-1544
  • 66 Makogonenko E, Tsurupa G, Ingham K, Medved L. Interaction of fibrin(ogen) with fibronectin: further characterization and localization of the fibronectin-binding site. Biochemistry 2002; 41 (25) 7907-7913
  • 67 Makogonenko E, Ingham KC, Medved L. Interaction of the fibronectin COOH-terminal Fib-2 regions with fibrin: further characterization and localization of the Fib-2-binding sites. Biochemistry 2007; 46 (18) 5418-5426
  • 68 Tsurupa G, Ho-Tin-Noe B, Loyau S, Angles-Cano E, Medved L. Identification and characterization of novel Lys-independent apo(a)-binding sites within fibrinogen αC-domains. J Biol Chem 2003; 278 (39) 37154-37159
  • 69 Tsurupa G, Medved L. Identification and characterization of novel tPA- and plasminogen-binding sites within fibrin(ogen) α C-domains. Biochemistry 2001; 40 (03) 801-808
  • 70 Tsurupa G, Medved L. Fibrinogen α C domains contain cryptic plasminogen and tPA binding sites. Ann N Y Acad Sci 2001; 936: 328-330
  • 71 Medved L, Nieuwenhuizen W. Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost 2003; 89 (03) 409-419
  • 72 Tsurupa G, Yakovlev S, McKee P, Medved L. Noncovalent interaction of α(2)-antiplasmin with fibrin(ogen): localization of α(2)-antiplasmin-binding sites. Biochemistry 2010; 49 (35) 7643-7651
  • 73 Fraser SR, Booth NA, Mutch NJ. The antifibrinolytic function of factor XIII is exclusively expressed through α2-antiplasmin cross-linking. Blood 2011; 117 (23) 6371-6374
  • 74 Litvinov RI, Farrell DH, Weisel JW, Bennett JS. The platelet integrin αIIbβ3 differentially interacts with fibrin versus fibrinogen. J Biol Chem 2016; 291 (15) 7858-7867
  • 75 Höök P, Litvinov RI, Kim OV. et al. Strong binding of the platelet integrin αIIbβ3 to fibrin clots: a potential target to destabilize thrombi. Sci Rep 2017; 7 (01) 13001
  • 76 Belkin AM, Tsurupa G, Zemskov E, Veklich Y, Weisel JW, Medved L. Transglutaminase-mediated oligomerization of the fibrin(ogen) alphaC domains promotes integrin-dependent cell adhesion and signaling. Blood 2005; 105 (09) 3561-3568
  • 77 Yakovlev S, Mikhailenko I, Tsurupa G, Belkin AM, Medved L. Polymerisation of fibrin αC-domains promotes endothelial cell migration and proliferation. Thromb Haemost 2014; 112 (06) 1244-1251