CC BY-NC-ND 4.0 · Planta Medica International Open 2022; 9(01): e60-e71
DOI: 10.1055/a-1712-8178
Original Papers

Antidiabetic Activity of Caulerpa racemosa: Role of Proinflammatory Mediators, Oxidative Stress, and Other Biomarkers

Rahul V. Mandlik
1   Faculty of Pharmacy, Pacific Academy of Higher Education and Research, Pacific Hills, Udaipur, India
2   Medical Affairs, Shalina Healthcare DMCC, Almas Tower, Dubai, UAE
Suresh R. Naik
3   Ex-Dean, Sinhgad Institute of Pharmaceutical Sciences, Kusgaon (Bk), Lonavala, India
Sandip Zine
4   Department of Pharmaceutical Chemistry, SVKM’s Dr Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai, India
Hemen Ved
5   Department of Pharmacology, SVKM’s Dr Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai, India
Gaurav Doshi
5   Department of Pharmacology, SVKM’s Dr Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai, India
› Author Affiliations


A marine alga, Caulerpa racemose (seaweed), exhibits few biological activities, such as antinociceptive/anti-inflammatory, antitumor, and growth regulator. This study aimed to determine the antidiabetic activity of this seaweed. High-performance thin-layer chromatography of C. racemosa ethanolic extract was performed to identify its active constituents. Antidiabetic activity of C. racemosa ethanolic extract (100 and 200 mg/kg) was evaluated using various biochemical paradigms against glipizide (5 mg/kg) in a streptozotocin-induced diabetes rat model. High-performance thin-layer chromatography revealed β-sitosterol as an active constituent and also indicated the presence of saponins and alkaloids. Treatment with C. racemosa ethanolic extract significantly reduced blood glucose levels in diabetic rats, and the degree of glucose reduction was comparable to that attained by glipizide treatment. The C. racemosa ethanolic extract treatment restored the impaired glycosylated hemoglobin level, liver glycogen level, glucose uptake by hemidiaphragm, and glucose transport by hepatic cells. Pretreatment with C. racemosa ethanolic extract also restored lipid abnormalities, elevated liver enzymes, elevated inflammatory markers, and depleted endogenous antioxidants. A superior effect was shown by C. racemosa ethanolic extract (200 mg/kg) over glipizide (5 mg/kg). Moreover, the restoration of the histoarchitecture of the pancreas by C. racemosa ethanolic extract (200 mg/kg) was comparable to that of the glipizide (5 mg/kg) treatment group. The present experimental findings demonstrate significant antidiabetic activity of C. racemosa ethanolic extract in diabetic rats using various biochemical paradigms. Further, C. racemosa ethanolic extract seems to be safe and does not affect vital organs adversely.

Publication History

Received: 23 August 2021
Received: 14 October 2021

Accepted: 29 November 2021

Article published online:
31 January 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Rotter Ana, Barbier Michéle, Bertoni Francesco, Bones Atle M., Cancela M. Leonor, Carlsson Jens, Carvalho Maria F., Cegłowska Marta, Chirivella-Martorell Jerónimo, Conk Dalay Meltem, Cueto Mercedes, Dailianis Thanos, Deniz Irem, Díaz-Marrero Ana R., Drakulovic Dragana, Dubnika Arita, Edwards Christine, Einarsson Hjörleifur, Erdoğan Ayşegül, Eroldoğan Orhan Tufan, Ezra David, Fazi Stefano, FitzGerald Richard J., Gargan Laura M., Gaudêncio Susana P., Gligora Udovič Marija, Ivošević DeNardis Nadica, Jónsdóttir Rósa, Kataržytė Marija, Klun Katja, Kotta Jonne, Ktari Leila, Ljubešić Zrinka, Lukić Bilela Lada, Mandalakis Manolis, Massa-Gallucci Alexia, Matijošytė Inga, Mazur-Marzec Hanna, Mehiri Mohamed, Nielsen Søren Laurentius, Novoveská Lucie, Overlingė Donata, Perale Giuseppe, Ramasamy Praveen, Rebours Céline, Reinsch Thorsten, Reyes Fernando, Rinkevich Baruch, Robbens Johan, Röttinger Eric, Rudovica Vita, Sabotič Jerica, Safarik Ivo, Talve Siret, Tasdemir Deniz, Theodotou Schneider Xenia, Thomas Olivier P., Toruńska-Sitarz Anna, Varese Giovanna Cristina, Vasquez Marlen I. The essentials of marine biotechnology. Front Mar Sci 2021; 16: 158
  • 2 Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9: 196-233
  • 3 Ota A, Ulrih NP. An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes. Front Pharmacol 2017; 8: 436 : 1–16
  • 4 Rizvi SI, Mishra N. Traditional Indian medicines used for the management of diabetes mellitus. J Diabetes Res 2013; 2013: 712092
  • 5 Gunathilaka T, Keertihirathna LR, Peiris D. Advanced pharmacological uses of marine algae as an anti-diabetic therapy. In: El-Shemy H, editor. Pharmacognosy-medicinal plants. : IntechOpen; 2021
  • 6 Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015; 5: 194-222
  • 7 McKeegan K, Mason SA, Trewin AJ, Keske MA, Wadley GD, Della Gatta PA. Della Gatta PA, Nikolaidis MG, Parker L. Reactive oxygen species in exercise and insulin resistance: Working towards personalized antioxidant treatment. Redox Biol 2021; 44: 102005
  • 8 Kumar M, Gupta V, Kumari P, Reddy CRK, Jha B. Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J Food Compos Anal 2011; 24: 270-278
  • 9 Yap WF, Tay V, Tan SH, Yow YY, Chew J. Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics 2019; 8: 152 : 1–18
  • 10 Nagaraj SR, Osborne JW. Bioactive compounds from Caulerpa racemosa as a potent larvicidal and antibacterial agent. Front Biol 2014; 9: 300-305
  • 11 Ribeiro NA, Abreu TM, Chaves HV, Bezerra MM, Monteiro HS, Jorge RJ. Benevides NM. Sulfated polysaccharides isolated from the green seaweed Caulerpa racemosa plays antinociceptive and anti-inflammatory activities in a way dependent on HO-1 pathway activation. Inflamm Res 2014; 63: 569-580
  • 12 Cao M, Li Y, Famurewa AC, Olatunji OJ. Antidiabetic and Nephroprotective Effects of Polysaccharide Extract from the Seaweed Caulerpa racemosa in High Fructose-Streptozotocin Induced Diabetic Nephropathy. Diabetes Metab Syndr ObesTargets Ther 2021; 14: 2121
  • 13 El-Borady OM, Othman MS, Atallah HH, Moneim AEA. Hypoglycemic potential of selenium nanoparticles capped with polyvinyl-pyrrolidone in streptozotocin-induced experimental diabetes in rats. Heliyon 2020; 6: e04045
  • 14 Wei L, Lu Y, He S, Jin X, Zeng L, Zhang S. Chen Y, Tian B, Mai G, Yang G, Zhang J, Wang L, Li H, Markmann JF, Cheng J, Deng S. Induction of diabetes with signs of autoimmunity in primates by the injection of multiple-low-dose streptozotocin. Biochem Biophys Res Commun 2011; 412: 373-378
  • 15 Naik SR, Shaikh N, Patil RR, Somani RS, Mali AS. Protective activity profile of herbomineral medicine in early diabetic nephropathy rats: restoration of kidney antioxidants, hemodynamics and suppression of proinflammatory mediators. Biomed Aging Pathol 2014; 4: 33-41
  • 16 Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark Insights 2016; 11: 95-104
  • 17 Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA. Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep 2015; 20: 198-209
  • 18 Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress – A concise review. Saudi Pharm J 2016; 24: 547-553
  • 19 Sharma R, Satyanarayana P, Anand P, Kumari GA. Adiponectin Level Association with MDA in the Patients with Type 2 Diabetes Mellitus. Biomed Pharmacol J 2020; 13: 943-955
  • 20 Kar K, Bhattacharyya A, Paria B. Elevated MDA Level Correlates with Insulin Resistance in Prediabetes. J Clin Diagn Res 2018; 12: 22-24
  • 21 Lu SC. Glutathione synthesis. Biochim Biophys Acta Gen Subj 2013; 1830: 3143-3153
  • 22 Rahigude A, Bhutada P, Kaulaskar S, Aswar M, Otari K. Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience 2012; 226: 62-72
  • 23 Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK. Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci 2013; 5: 213
  • 24 Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of Oxidative Stress during Diabetes Mellitus. J Biomark 2013; 2013: 378790
  • 25 Wang Y, Xiang L, Wang C, Tang C, He X. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba l.) polyphenol enhanced extract. PLoS One 2013; 8: e71144
  • 26 Marques-Vidal P, Schmid R, Bochud M, Bastardot F, von Känel R, Paccaud F. Glaus J, Preisig M, Waeber G, Vollenweider P. Adipocytokines, hepatic and inflammatory biomarkers and incidence of type 2 diabetes. The CoLaus Study. PLoS One 2012; 7: e51768
  • 27 Kengne AP, Batty GD, Hamer M, Stamatakis E, Czernichow S. Association of C-reactive protein with cardiovascular disease mortality according to diabetes status: pooled analyses of 25,979 participants from four UK prospective cohort studies. Diabetes Care 2012; 35: 396-403
  • 28 Xiao J, Li J, Cai L, Chakrabarti S, Li X. Cytokines and diabetes research. J Diabetes Res 2014; 2014: 920613 . doi: 10.1155/2014/920613. Epub 2014 Jan 16. PMID: 24551859; PMCID: PMC3914520
  • 29 Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018; 17: 1-4
  • 30 Olmos G, Lladó J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat Inflamm 2014; 2014: 12
  • 31 Akash MS, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem 2018; 119: 105-110
  • 32 Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked?. J Biomed Sci 2016; 23: 1-8
  • 33 Qiao YC, Chen YL, Pan YH, Tian F, Xu Y, Zhang XX. Zhao HL. The change of serum tumor necrosis factor alpha in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. PLoS One 2017; 12: e0176157
  • 34 Al-Hakeim HK, Al-Kufi SN, Al-Dujaili AH, Maes M. Serum Interleukin Levels and Insulin Resistance in Major Depressive Disorder. CNS Neurol Disord Drug Targets 2018; 17: 618-625
  • 35 Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 2014; 13: 465-476
  • 36 Jonathan D, Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H. Diabetes dyslipidemia. Diabetes Ther 2016; 7: 203-219
  • 37 Santos-Gallego CG, Rosenson RS. Role of HDL in those with diabetes. Curr Cardiol Rep 2014; 16: 1-4
  • 38 Erejuwa OO, Nwobodo NN, Akpan JL, Okorie UA, Ezeonu CT, Ezeokpo BC, Nwadike KI, Erhiano E, Abdul Wahab MS, Sulaiman SA. Nigerian Honey Ameliorates Hyperglycemia and Dyslipidemia in Alloxan-Induced Diabetic Rats. Nutrients. 2016 Feb 24;8(3):95. doi: 10.3390/nu8030095. PMID: 26927161; PMCID: PMC4808836.
  • 39 Opoku S, Gan Y, Yobo EA, Tenkorang-Twum D, Yue W, Wang Z. Lu Z. Awareness, treatment, control, and determinants of dyslipidemia among adults in China. Sci Rep 2021; 12(1): 10056
  • 40 Rao UM, Adinew B. Remnant B-cell-stimulative and anti-oxidant effects of Persea americana fruit extract studied in rats introduced into streptzotocin-induced hyperglycaemic state. Afr J Tradit Complement Altern Med 2011; 8: 210-217
  • 41 Mandal A, Bhattarai B, Kafle P, Khalid M, Jonnadula SK, Lamicchane J. Kanth R, Gayam V. Elevated Liver Enzymes in Patients with Type 2 Diabetes Mellitus and Non-alcoholic Fatty Liver Disease. Cureus 2018; 10: e3626
  • 42 Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6: 456
  • 43 Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes 2011; 3: 29-37
  • 44 Bumrela S, Bumrela SB, Naik SR. Identification of β-carotene and β-sitosterol in methanolic extract of Dipteracanthus patulus (Jacq) nees and their role in antimicrobial and antioxidant activity. Int J Phytomedicine 2011; 3: 204-215
  • 45 Siddique HR, Saleem M. Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci 2011; 88: 285-293
  • 46 Siddique HR, Saleem M. Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci 2011; 88: 285-293
  • 47 Lucena AMM, Souza CRM, Jales JT, Guedes PMM, de Miranda GEC, de Moura AMA, Araújo-Júnior JX, Nascimento GJ, Scortecci KC, Santos BVO, Souto JT The Bisindole Alkaloid Caulerpin, from Seaweeds of the Genus Caulerpa, Attenuated Colon Damage in Murine Colitis Model. Marine drugs 2018; 16: 318
  • 48 Nagja T, Kumar V, Sanjeev A. Anti-diabetic activity of a polyherbal formulation in Streptozotocin induced Type 2 Diabetic rats. J Nat Remedies 2017; 16: 148-152
  • 49 Parker KM, England JD, Da Costa J, Hess RL, Goldstein DE. Improved colorimetric assay for glycosylated hemoglobin. Clin Chem. 1981 May;27(5):669–672
  • 50 Carroll NV, Longley RW, Roe JH. The determination of glycogen in liver and muscle by use of anthrone reagent. J Biol Chem 1956; 220: 583-593
  • 51 Patel DK, Krishnamurthy S, Hemalatha S. Evaluation of glucose utilization capacity of bioactivity guided fractions of Hybanthus enneaspermus and Pedalium murex in isolated rat hemidiaphragm. J Acute Dis 2013; 2: 33-36
  • 52 Arumugam S, Natesan S. Hypoglycemic effects of Barleria Noctiflora fractions on high fat fed with low dose Streptozotocin induced type-2 diabetes in rats. Int J Pharm Pharm Sci 2016; 8: 193-200
  • 53 Simeonova R, Vitcheva V, Kondeva-Burdina M, Popov G, Shkondrov A, Manov V. Ilina K. Alcesefoliside protects against oxidative brain injury in rats. Rev Bras Farmacogn 2019; 29: 221-227
  • 54 Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 1982; 126: 131-138
  • 55 Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 1972; 247: 3170-3175
  • 56 Aebi H. Catalase in vivo. In: Methods of enzymology. Volume 105. New York: Academic Press; 1984: 673-684
  • 57 Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta Gen Subj 1979; 582: 67-78