Synlett 2022; 33(08): 713-720
DOI: 10.1055/a-1709-3098
synpacts

New Avenues in Copper-Mediated Trifluoromethylation Reactions Using Fluoroform as the CF3 Source

Xinkan Yang
,
This work was supported by the Research Grants Council of Hong Kong (NSFC/RGC Joint Research Scheme, N_CUHK403/20) and the Chinese University of Hong Kong (Faculty of Science, Direct Grant for Research). We also thank the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences for funding.


Dedicated to Professor Benjamin List on winning the Nobel Prize in Chemistry 2021

Abstract

Organic molecules containing the trifluoromethyl (CF3) group play a vital role in pharmaceuticals, agrochemicals, and materials. New trifluoromethylation methods should encompass capabilities to address issues in efficiency, selectivity, and CF3 source all at once. Fluoroform (CF3H), an industrial byproduct, has emerged as an attractive CF3 source. The reaction profile of the [CuCF3] reagent derived from fluo­roform has surpassed its original applications in cross-coupling-type trifluoromethylation. We have discovered a host of unique copper-mediated trifluoromethylation reactions using [CuCF3] from fluoroform, especially under oxidative conditions, to deliver efficient and selective synthesis of trifluoromethylated compounds.

1 Introduction

2 Construction of C–CF3 Bonds for the Synthesis of Trifluoromethylated Building Blocks

2.1 C(sp)–CF3 Bond Formation

2.2 C(sp2)–CF3 Bond Formation

2.3 C(sp3)–CF3 Bond Formation

3 Domino Synthesis of Trifluoromethylated Heterocycles

3.1 3-(Trifluoromethyl)indoles

3.2 3-(Trifluoromethyl)benzofurans

3.3 2-(Trifluoromethyl)indoles

4 Trifluoromethylative Difunctionalization of Arynes

4.1 Trifluoromethylation–Allylation of Arynes

4.2 1,2-Bis(trifluoromethylation) of Arynes

5 Pentafluoroethylation of Unactivated Alkenes

6 Conclusion



Publikationsverlauf

Eingereicht: 10. November 2021

Angenommen nach Revision: 30. November 2021

Accepted Manuscript online:
30. November 2021

Artikel online veröffentlicht:
05. Januar 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Britton R, Gouverneur V, Lin J.-H, Meanwell M, Ni C, Pupo G, Xiao J.-C, Hu J. Nat. Rev. Methods Primers 2021; 1: 47
  • 2 de la Torre BG, Albericio F. Molecules 2021; 26: 627
    • 3a Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 3b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 4a Prakash GK. S, Yudin AK. Chem. Rev. 1997; 97: 757
    • 4b Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
    • 4c Umemoto T, Ishihara S. Tetrahedron Lett. 1990; 31: 3579
    • 4d Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1991; 32: 7525
    • 4e Fujiwara Y, Dixon JA, Fionn O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herlé B, Sach N, Collins MR, Ishihara Y, Baran PS. Nature 2012; 492: 95
  • 5 Zanardi A, Novikov MA, Martin E, Benet-Buchholz J, Grushin VV. J. Am. Chem. Soc. 2011; 133: 20901
  • 6 Grushin VV. Chemistry Today 2014; 32: 81
    • 7a Novák P, Lishchynskyi A, Grushin VV. Angew. Chem. Int. Ed. 2012; 51: 7767
    • 7b Novák P, Lishchynskyi A, Grushin VV. J. Am. Chem. Soc. 2012; 134: 16167
    • 7c Lishchynskyi A, Novikov MA, Martin E, Escudero-Adán EC, Novák P, Grushin VV. J. Org. Chem. 2013; 78: 11126
    • 7d Lishchynskyi A, Berthon G, Grushin VV. Chem. Commun. 2014; 50: 10237
    • 7e Mazloomi Z, Bansode A, Benavente P, Lishchynskyi A, Urakawa A, Grushin VV. Org. Process Res. Dev. 2014; 18: 1020
    • 7f Lishchynskyi A, Mazloomi Z, Grushin VV. Synlett 2015; 26: 45
  • 8 He L, Tsui GC. Org. Lett. 2016; 18: 2800
  • 9 Zhao M, Yang X, Tsui GC, Miao Q. J. Org. Chem. 2020; 85: 44
  • 10 He L, Yang X, Tsui GC. J. Org. Chem. 2017; 82: 6192
  • 11 Yang X, He L, Tsui GC. Org. Lett. 2017; 19: 2446
    • 12a Ilchenko NO, Janson PG, Szabó KJ. Chem. Commun. 2013; 49: 6614
    • 12b Janson PG, Ilchenko NO, Diez-Varga A, Szabó KJ. Tetrahedron 2015; 71: 922
    • 13a Hu M, Ni C, Hu J. J. Am. Chem. Soc. 2012; 134: 15257
    • 13b Hu X.-Q, Han J.-B, Zhang C.-P. Eur. J. Org. Chem. 2017; 324
  • 14 Ma Q, Tsui GC. Org. Chem. Front. 2019; 6: 27
    • 15a Muzalevskiy V, Shastin A, Balenkova E, Haufe G, Nenajdenko V. Synthesis 2009; 3905
    • 15b Gakh AA, Shermolovich Y. Curr. Top. Med. Chem. 2014; 14: 952
  • 17 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 18 Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
  • 19 Ye Y, Cheung KP. S, He L, Tsui GC. Org. Chem. Front. 2018; 5: 1511
  • 20 Li M, Ye Y, He L, Hui M, Ng TB, Wong JH, Tsui GC. Asian J. Org. Chem. 2019; 8: 702
  • 21 Hiremathad A, Patil MR, Chethana KR, Chand K, Santos MA, Keri RS. RSC Adv. 2015; 5: 96809
  • 22 Ye Y, Cheung KP. S, He L, Tsui GC. Org. Lett. 2018; 20: 1676
  • 23 Chen J, Liu B, Liu D, Liu S, Cheng J. Adv. Synth. Catal. 2012; 354: 2438
  • 24 Swarts F. Bull. Soc. Chim. Belg. 1892; 24: 309
    • 25a Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 25b Liu T, Shen Q. Eur. J. Org. Chem. 2012; 6679
    • 25c Liu H, Gu Z, Jiang X. Adv. Synth. Catal. 2013; 355: 617
    • 26a Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
    • 26b Yoshida S, Hosoya T. Chem. Lett. 2015; 44: 1450
  • 27 Feng M, Jiang X. Synthesis 2017; 49: 4414
    • 28a Zeng Y, Zhang L, Zhao Y, Ni C, Zhao J, Hu J. J. Am. Chem. Soc. 2013; 135: 2955
    • 28b Zeng Y, Hu J. Chem. Eur. J. 2014; 20: 6866
  • 29 Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 12: 1211
  • 30 Yang X, Tsui GC. Org. Lett. 2018; 20: 1179
  • 31 Yang X, Tsui GC. Chem. Sci. 2018; 9: 8871
  • 32 Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
  • 33 Lishchynskyi A, Grushin VV. J. Am. Chem. Soc. 2013; 135: 12584
  • 34 Yang X, Tsui GC. Org. Lett. 2020; 22: 4562
  • 35 Xiang J.-X, Ouyang Y, Xu X.-H, Qing F.-L. Angew. Chem. Int. Ed. 2019; 58: 10320