CC BY-NC-ND 4.0 · Planta Medica International Open 2022; 9(01): e1-e11
DOI: 10.1055/a-1696-6741
Original Papers

Anti-Alzheimer’s and Anti-inflammatory Activities of Compounds Isolated from Solanum Mauritianum

Luis Apaza Ticona
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
2   Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, Madrid, Spain
Borja Durán García
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
Marcos Humanes Bastante
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
Andreea Madalina Serban
3   Maria Sklodowska Curie University Hospital for Children, Bucharest, Romania
Ángel Rumbero Sánchez
1   Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
› Author Affiliations


Solanum mauritianum, commonly known as “Tabaquillo”, was one of the most used plants by tribes from South America as a remedy for headaches. Based on this ethnopharmacological use, a bioguided isolation of compounds with anti-inflammatory and anti-Alzheimer’s activities from S. mauritianum was carried out by measuring the inhibition of NF-κB in C8D1A, Neuro-2a, and EOC 13.31 cells, and by measuring the inhibition of acetylcholinesterase and β-amyloid. This allowed the isolation and characterisation by nuclear magnetic resonance and mass spectrometry of four compounds (14). Compounds 14 showed NF-κB inhibitory activity with IC50 values of 9.13–9.96, 17.17–17.77, 2.41–2.79, and 1.59–1.93 µM, respectively, while celastrol (the positive control) had an IC50 value of 7.41 µM. Likewise, compounds 14 showed anti-Alzheimer’s activity, inhibiting the acetylcholinesterase by 40.33, 20.57, 61.26, and 83.32%, respectively, while galantamine (positive control) showed an inhibition of 90.38%. In addition, concerning the inhibition of β-amyloid aggregation, compounds 14 showed an inhibition of 47, 23, 65, and 93%, respectively, while curcumin (positive control) had an inhibition of 71.19%.

Supplementary Material

Publication History

Received: 04 August 2021
Received: 21 September 2021

Accepted: 09 November 2021

Article published online:
07 February 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dement 2015; 11: 332-384
  • 2 Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dement 2020; 16: 391-460
  • 3 Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020; 25: 5789
  • 4 Vaz M, Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur J Pharmacol 2020; 887: 173554
  • 5 Abeysinghe A, Deshapriya R, Udawatte C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256: 117996
  • 6 Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 2020; 15: 1–37
  • 7 Megur A, Baltriukienė D, Bukelskienė V, Burokas A. The Microbiota-Gut-Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame?. Nutrients 2020; 13: 1–24
  • 8 Torres-Acosta N, O’Keefe JH, O’Keefe EL, Isaacson R, Small G. Therapeutic Potential of TNF-α Inhibition for Alzheimer’s Disease Prevention. J Alzheimer Dis 2020; 78: 619-626
  • 9 Malafaia D, Albuquerque H, Silva A. Amyloid-β and tau aggregation dual-inhibitors: A synthetic and structure-activity relationship focused review. Eur J Med Chem 2021; 214: 113209
  • 10 Ismaili L, do Carmo Carreiras M. Multicomponent Reactions for Multitargeted Compounds for Alzheimer’s Disease. Curr Top Med Chem 2017; 17: 3319-3327
  • 11 Kokras N, Stamouli E, Sotiropoulos I, Katirtzoglou EA, Siarkos KT, Dalagiorgou G, Alexandraki KI, Coulocheri S, Piperi C, Politis AM. Acetyl Cholinesterase Inhibitors and Cell-Derived Peripheral Inflammatory Cytokines in Early Stages of Alzheimer’s Disease. J Clin Psychopharmacol 2018; 38: 138-143
  • 12 Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27: 1–13
  • 13 Andrade S, Ramalho MJ, Loureiro JA, Pereira M. Natural Compounds for Alzheimer’s Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20: 2313
  • 14 Hoskin JL, Al-Hasan Y, Sabbagh MN. Nicotinic Acetylcholine Receptor Agonists for the Treatment of Alzheimer’s Dementia: An Update. Nicotine Tob Res 2019; 21: 370-376
  • 15 Monacelli F, Acquarone E, Giannotti C, Borghi R, Nencioni A. Vitamin C, Aging and Alzheimer’s Disease. Nutrients 2017; 9: 1–26
  • 16 Howes MR, Fang R, Houghton PJ. Effect of Chinese Herbal Medicine on Alzheimer’s Disease. Int Rev Neurobiol 2017; 135: 29-56
  • 17 Kaunda JS, Zhang YJ. The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review. Nat Prod Bioprospect 2019; 9: 77-137
  • 18 Trevisan MTS, Macedo FVV. Seleção de plantas com atividade anticolinesterase para tratamento da doença de Alzheimer. Quim Nova 2003; 26: 301-304
  • 19 Ogunsuyi OB, Ademiluyi AO, Oboh G, Oyeleye SI, Dada AF. Green leafy vegetables from two Solanum spp. (Solanum nigrum L and Solanum macrocarpon L) ameliorate scopolamine-induced cognitive and neurochemical impairments in rats. Food Sci Nutr 2018; 6: 860-870
  • 20 Safitri I, Hidayati HB, Turchan A. Suhartati, Khaerunnisa S. Solanum betaceum improves cognitive function by decreasing N-methyl-D-aspartate on alzheimer rats model. Int J App Pharm 2019; 11: 167-170
  • 21 Pelo SP, Adebo OA, Green E. Chemotaxonomic profiling of fungal endophytes of Solanum mauritianum (alien weed) using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). Metabolomics 2021; 17: 1–13
  • 22 Minghetti E, Olivera L, Montemayor SI. Ecological niche modelling of Gargaphia decoris (Heteroptera), a biological control agent of the invasive tree Solanum mauritianum (Solanales: Solanaceae). Pest Manag Sci 2020; 76: 1273-1281
  • 23 Jayakumar K, Meenu Krishnan VG, Murugan K. Evaluation of antioxidant and antihemolytic activities of purified caulophyllumine-A from Solanum mauritianum Scop. J Pharmacogn Phytochem 2016; 5: 195-199
  • 24 Jayakumar K, Murugan K. Pharmacological, Micromorphological Studies on Solanum mauritianum Scop. (Solanaceae): A Search. Int J Pharm Sci Rev Res 2015; 35: 134-139
  • 25 Jayakumar K, Murugan K. Purified solasodine and caulophyllumine: a from Solanum mauritianum Scop. against MCF-7 breast cancer cell lines in terms of cell growth, cell cycle and apoptosis. J Pharmacogn Phytochem 2017; 6: 472-478
  • 26 Gawinecki R, Kolehmainen E, Kauppinen R. 1H and 13C NMR studies of para-substituted benzaldoximes for evaluation of the electron donor properties of substituted amino groups. J Chem Soc Perkin Trans 2 1998; 1: 25-30
  • 27 Ribeiro TS, Prates A, Alves SR, Oliveira-Silva JJ, Riehl CAS, Figueroa-Villar JD. The effect of neutral oximes on the reactivation of human acetylcholinesterase inhibited with paraoxon. J Braz Chem Soc 2012; 23: 1216-1225
  • 28 Liu FF, Yang XY, Hao FH, Wang YI, Tang HR. Assignments of 1H and 13C NMR signals of 26 metabolites associated with the shikimate pathway. Magn Reson Chem 2017; 34: 311-322
  • 29 Chaitanya MVNL, Dhanabal SP, Pavithra N, Rama Satyanarayana Raju K, Jubie S. Phytochemical Analysis and In-vitro Antioxidant and cytotoxic activity of Aerial parts of Cestrum aurantiacum and Solanum mauritianum (Solanaceae weeds of Niligiris). Helix 2015; 3: 683-687
  • 30 Ravi V, Saleem TSM, Patel SS, Raamamurthy J, Gauthaman K. Anti-Inflammatory effect of methanolic extract of Solanum nigrum Linn berries. Int J Appl Res Nat Prod 2009; 2: 33-36
  • 31 da Costa GA, Morais MG, Saldanha AA, Assis Silva IC, Aleixo ÁA, Ferreira JM, Soares AC, Duarte-Almeida JM, Lima LA. Antioxidant, Antibacterial, Cytotoxic, and Anti-Inflammatory Potential of the Leaves of Solanum lycocarpum A. St. Hil. (Solanaceae). Evid Based Complement Alternat Med 2015; 2015: 315987
  • 32 Rahman H, Rahman N, Haris M, Mahmood R. Antioxidant and anti-inflammatory potentials of Solanum pubescens Willd an ethnomedicinal plant of South Western Andhra Pradesh, India. J Res Pharm 2019; 23: 187-197
  • 33 Nwanna EE, Ibukun EO, Oboh G. Eggplant (Solanum spp) supplemented fruits diet modulated the activities of ectonucleoside triphosphate diphosphohydrolase (ENTPdase), monoamine oxidase (MAO), and cholinesterases (AChE/BChE) in the brain of diabetic Wistar male rats. J Food Biochem 2019; 43: e12910
  • 34 Javaid U, Javaid S, Ashraf W, Rasool MF, Normal OM, Alqahtani AS, Majeed A, Shakeel W, Albekairi TH, Alqahtani F, Imran I. Chemical Profiling and Dose-Dependent Assessment of Fear Reducing and Memory-Enhancing Effects of Solanum virginianum in Rats. Dose Response 2021; 19: 1559325821998486
  • 35 Seymour D, Wolfstirn KB. Substituted Styrenes. III. The Preparation of Some m- and p-Substituted α-Methylstyrenes. J Am Chem Soc 1948; 70: 1177-1179
  • 36 Aoi Y, Tanaka K, Cook SD, Hayashi K, Kasahara H. GH3 auxin-amido synthetases alter the ratio of indole-3-acetic acid and phenylacetic acid in Arabidopsis. Plant Cell Physiol 2019; 61: 595-605
  • 37 Tengfei Y, Wei W, Ningning C, Jinchun C. Preparation method and application of N-αβ unsaturated ketone compound. PA. 2020; CN112552193.
  • 38 Wang Y, Tao H, Huang H, Xiao Y, Wu X, Li M, Shen J, Xiao Z, Zhao Y, Du F, Ji H, Chen Y, Cho CH, Wang Y, Wang S, Wu X. The dietary supplement Rhodiola crenulata extract alleviates dextran sulphate sodium-induced colitis in mice through anti-inflammation, mediating gut barrier integrity and reshaping the gut microbiome. Food Funct 2021; 12: 3142-3158
  • 39 Kapustikova I, Bak A, Gonec T, Kos J, Kozik V, Jampilek J. Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides. Molecules 2018; 23: 1–15
  • 40 Zarzycka B, Seijkens T, Nabuurs SB, Ritschel T, Grommes J, Soehnlein O, Schrijver R, Van Tiel CM, Hackeng TM, Weber C, Giehler F, Kieser A, Lutgens E, Vriend G, Nicolaes GAF. Discovery of Small Molecule CD40-TRAF6 Inhibitors. J Chem Inf Model 2015; 55: 294-307
  • 41 Li L, Liu Y, Chen H, Li F, Wu J, Zhang H, He J, Xing Y, Chen Y, Wang X, Tian X, Li A, Zhang Q, Huang P, Lin T, Wu Q. Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. Nat Chem Biol 2015; 11: 339-346
  • 42 Youn GS, Kwon DJ, Ju SM, Rhim H, Yong Soo Bae YS, Choi SY, Park J. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes. Toxicol Appl Pharm 2014; 280: 42-52
  • 43 Sato M, Murakami K, Uno M, Nakagawa Y, Katayama S, Akagi K, Masuda Y, Takegoshi K, Irie K. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem 2013; 288: 23212-23224
  • 44 Katalinić M, Rusak G, Domaćinović Barović J, Sinko G, Jelić D, Antolović R, Kovarik Z. Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. Eur J Med Chem 2010; 45: 186-192
  • 45 Park CH, Martinez BC. Enhanced release of rosmarinic acid from Coleus blumei permeabilized by dimethyl sulfoxide (DMSO) while preserving cell viability and growth. Biotechnol Bioeng 1992; 40: 459-464
  • 46 Tena Pérez V, Apaza Ticona L, Cabanillas HA, Maderuelo Corral S, Perles J, Rosero Valencia DF, Quintana AM, Ortega Domenech M, Rumbero Sánchez Á. Antitumoral potential of carbamidocyclophanes and carbamidocylindrofridin A isolated from the cyanobacterium Cylindrospermum stagnale BEA 0605B. Phytochemistry 2020; 180: 112529
  • 47 Apaza Ticona L, Rumbero Sánchez Á, Sánchez Sánchez-Corral J, Iglesias Moreno P, Ortega Domenech M. Anti-inflammatory, pro-proliferative and antimicrobial potential of the compounds isolated from Daemonorops draco (Willd.) Blume. J Ethnopharmacol 2021; 268: 113668
  • 48 Khan RA, Khan MR, Sahreen S. Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: efficiency of Sonchus asper. Behav Brain Funct 2012; 8: 1–7
  • 49 Abouelela ME, Orabi M, Abdelhamid RA, Abdelkader M, Darwish F, Hotsumi M, Konno H. Anti-Alzheimer’s flavanolignans from Ceiba pentandra aerial parts. Fitoterapia 2020; 143: 104541