CC BY-NC-ND 4.0 · Organic Materials 2021; 3(04): 477-487
DOI: 10.1055/a-1679-9558
Focus Issue: Supramolecular Optoelectronic Materials
Original Article

Red Thermally Activated Delayed Fluorescence in Dibenzopyridoquinoxaline-Based Nanoaggregates

a   Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
,
a   Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
,
a   Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
,
a   Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
,
a   Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
› Author Affiliations


Abstract

All-organic thermally activated delayed fluorescence (TADF) materials have emerged as potential candidates for optoelectronic devices and biomedical applications. However, the development of organic TADF probes with strong emission in the longer wavelength region (> 600 nm) remains a challenge. Strong π-conjugated rigid acceptor cores substituted with multiple donor units can be a viable design strategy to obtain red TADF probes. Herein, 3,6-di-t-butyl carbazole substituted to a dibenzopyridoquinoxaline acceptor core resulted in a T-shaped donor–acceptor–donor compound, PQACz-T, exhibiting red TADF in polymer-embedded thin-films. Further, PQACz-T self-assembled to molecular nanoaggregates of diverse size and shape in THF–water mixture showing bright red emission along with delayed fluorescence even in an aqueous environment. The self-assembly and the excited-state properties of PQACz-T were compared with the nonalkylated analogue, PQCz-T. The delayed fluorescence in nanoaggregates was attributed to the high rate of reverse intersystem crossing. Moreover, an aqueous dispersion of the smaller-sized, homogeneous distribution of fluorescent nanoparticles was fabricated upon encapsulating PQACz-T in a triblock copolymer, F-127. Cytocompatible polymer-encapsulated PQACz-T nanoparticles with large Stokes shift and excellent photostability were demonstrated for the specific imaging of lipid droplets in HeLa cells.



Publication History

Received: 01 August 2021

Accepted: 26 October 2021

Accepted Manuscript online:
27 October 2021

Article published online:
26 November 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 234
  • 2 Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W. Adv. Mater. 2014; 26: 7931
  • 3 Liu Y, Li C, Ren Z, Yan S, Bryce MR. Nat. Rev. Mater. 2018; 3: 18020
  • 4 Im Y, Kim M, Cho YJ, Seo JA, Yook KS, Lee JY. Chem. Mater. 2017; 29: 1946
  • 5 Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Chem. Soc. Rev. 2017; 46: 915
  • 6 Chen XK, Kim D, Brédas JL. Acc. Chem. Res. 2018; 51: 2215
  • 7 Pashazadeh R, Pander P, Bucinskas A, Skabara PJ, Dias FB, Grazulevicius JV. Chem. Commun. 2018; 54: 13857
  • 8 Zhu Z, Tian D, Gao P, Wang K, Li Y, Shu X, Zhu J, Zhao Q. J. Am. Chem. Soc. 2018; 140: 17484
  • 9 Paisley NR, Halldorson SV, Tran MV, Gupta R, Kamal S, Algar R, Hudson ZM. Angew. Chem. Int. Ed. 2021; 60: 18630
  • 10 Kawasumi K, Wu T, Zhu T, Chae HS, Voorhis TV, Baldo MA, Swager TM. J. Am. Chem. Soc. 2015; 137: 11908
  • 11 Data P, Pander P, Okazaki M, Takeda Y, Minakata S, Monkman AP. Angew. Chem. Int. Ed. 2016; 55: 5739
  • 12 Kuila S, Garain S, Banappanavar G, Garain BC, Kabra D, Pati SK, George S. J. Phys. Chem. B 2021; 125: 4520
  • 13 Imagawa T, Hirata S, Totani K, Watanabe T, Vacha M. Chem. Commun. 2015; 51: 13268
  • 14 Ward JS, Nobuyasu RS, Batsanov AS, Data P, Monkman AP, Dias FB, Bryce MR. Chem. Commun. 2016; 52: 2612
  • 15 Klimash A, Pander P, Klooster WT, Coles SJ, Data P, Dias FB, Skabara PJ. J. Mater. Chem. C 2018; 6: 10557
  • 16 Santos PL, Chen D, Rajamalli P, Matulaitis T, Cordes DB, Slawin AM. Z, Jacquemin D, Colman EZ, Samuel ID. W. ACS Appl. Mater. Interfaces 2019; 11: 45171
  • 17 Xie FM, Li HZ, Dai GL, Li YQ, Cheng T, Xie M, Tang JX, Zhao X. ACS Appl. Mater. Interfaces 2019; 11: 26144
  • 18 Sk B, Sharma S, James A, Kundu S, Patra A. J. Mater. Chem. C 2020; 8: 12943
  • 19 Voll CC. A, Markopoulos G, Wu TC, Welborn M, Engelhart JU, Rochat S, Han GG. D, Sazama GT, Lin TA, Voorhis TV, Baldo MA, Swager TM. Org. Mater. 2020; 2: 1
  • 20 Xiao YF, Chen JX, Li S, Tao WW, Tian S, Wang K, Cui X, Huang Z, Zhang XH, Lee CS. Chem. Sci. 2020; 11: 888
  • 21 Wang S, Cheng Z, Song X, Yan X, Ye K, Liu Y, Yang G, Wang Y. ACS Appl. Mater. Interfaces 2017; 9: 9892
  • 22 Wei W, Yang Z, Chen X, Liu T, Mao Z, Zhao J, Chi Z. J. Mater. Chem. C 2020; 8: 3663
  • 23 Bhattacharjee I, Acharya N, Bhatia H, Ray D. J. Phys. Chem. Lett. 2018; 9: 2733
  • 24 Li C, Duan R, Liang B, Han G, Wang S, Ye K, Liu Y, Yi Y, Wang Y. Angew. Chem. Int. Ed. 2017; 56: 11525
  • 25 Hu W, Guo L, Bai L, Miao X, Ni Y, Wang Q, Zhao H, Xie M, Li L, Lu X, Huang W, Fan Q. Adv. Healthcare Mater. 2018; 7: 1800299
  • 26 Zhang YL, Ran Q, Wang Q, Liu Y, Hänish C, Reineke S, Fan J, Liao LS. Adv. Mater. 2019; 31: 1902368
  • 27 Ni F, Zhu Z, Tong X, Zeng W, An K, Wei D, Gong S, Zhao Q, Zhou X, Yang C. Adv. Sci. 2019; 6: 1801729
  • 28 Jena S, Dhanalakshmi P, Bano G, Thilagar P. J. Phys. Chem. B 2020; 124: 5393
  • 29 Englman R, Jortner J. Mol. Phys. 1970; 18: 145
  • 30 Srujana P, Sudhakar P, Radhakrishnan TP. J. Mater. Chem. C 2018; 6: 9314
  • 31 Chen Y, Lam JW. Y, Kwok RT. K, Liu B, Tang BZ. Mater. Horiz. 2019; 6: 428
  • 32 Kim JH, Yun JH, Lee JY. Adv. Opt. Mater. 2018; 6: 1800255
  • 33 Kuila S, Ghorai A, Samanta PK, Siram RB. K, Pati SK, Narayan KS, George S. Chem. Eur. J. 2019; 25: 16007
  • 34 Lin MJ, Jiménez ÁJ, Burschka C, Würthner F. Chem. Commun. 2012; 48: 12050
  • 35 Fan Y, Li Q, Li Z. Mater. Chem. Front. 2021; 5: 1525
  • 36 Gong Y, Zhang Y, Yuan WZ, Sun JZ, Zhang Y. J. Phys. Chem. C 2014; 118: 10998
  • 37 Sk B, Khodia S, Patra A. Chem. Commun. 2018; 54: 1786
  • 38 Zheng X, Zhu W, Ni F, Ai H, Gong S, Zhou X, Sessler JL, Yang C. Chem. Sci. 2019; 10: 2342
  • 39 Singha S, Kim D, Roy B, Sambasivan S, Moon H, Rao AS, Kim JY, Joo T, Park JW, Rhee YM, Wang T, Kim KH, Shin YH, Jung J, Ahn KH. Chem. Sci. 2015; 6: 4335
  • 40 Sasaki S, Drumen GP. C, Konishi G. J. Mater. Chem. C 2016; 4: 2731
  • 41 Reja SI, Khan IA, Bhalla V, Kumar M. Chem. Commun. 2016; 52,: 1182
  • 42 Abdel-Shafi AA, Worrall DR. J. Photochem. Photobiol., A. 2005; 172: 170
  • 43 Cheng YH, Belyaev A, Ho ML, Koshevoy IO, Chou PT. Phys. Chem. Chem. Phys. 2020; 22: 27144
  • 44 Zhang D, Cai M, Zhang Y, Zhang D, Duan L. Mater. Horiz. 2016; 3: 145
  • 45 Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bässler H, Porsch M, Daub J. Adv. Mater. 1995; 7: 551
  • 46 Kim HS, Park SR, Suh MC. J. Phys. Chem. C 2017; 121: 13986
  • 47 Lin JA, Li SW, Liu ZY, Chen DG, Huang CY, Wei YC, Chen YY, Tsai ZH, Lo CY, Hung WY, Wong KT, Chou PT. Chem. Mater. 2019; 31: 5981
  • 48 Guo J, Fan J, Lin L, Zeng J, Liu H, Wang CK, Zhao Z, Tang BZ. Adv. Sci. 2019; 6: 1801629
  • 49 Qi S, Kim S, Nguyen VN, Kim Y, Niu G, Kim G, Kim SJ, Park S, Yoon J. ACS Appl. Mater. Interfaces 2020; 12: 51293
  • 50 Tsuchiya Y, Ikesue K, Nakanotani H, Adachi C. Chem. Commun. 2019; 55: 5215
  • 51 Li X, Baryshnikov G, Ding L, Bao X, Li X, Lu J, Liu M, Shen S, Luo M, Zhang M, Årgen H, Wang X, Zhu L. Angew. Chem. Int. Ed. 2020; 59: 7548
  • 52 Qin W, Feng G, Li M, Yang Z, Liu B, Tang BZ. Adv. Funct. Mater. 2014; 24: 635
  • 53 Zhang K, Zhang Y, Ma Y, Fan J, Wang CK, Lin L. J. Phys. Chem. A 2020; 124: 8540
  • 54 Zhang H, Chen PZ, Niu LY, Yang QZ. Mater. Chem. Front. 2020; 4: 285
  • 55 Li N, Liu YY, Li Y, Zhuang JB, Cui RR, Gong Q, Zhao N, Tang BZ. ACS Appl. Mater. Interfaces 2018; 10: 24249
  • 56 Kundu S, Chowdhury A, Nandi S, Bhattacharyya K, Patra A. Chem. Sci. 2021; 12: 5874
  • 57 Middha E, Liu B. ACS Nano 2020; 14,: 9228
  • 58 Cheng HB, Li Y, Tang BZ, Yoon J. Chem. Soc. Rev. 2020; 49: 21
  • 59 Chen C, Wylie RA. L, Klinger D, Connal LA. Chem. Mater. 2017; 29: 1918
  • 60 Qi J, Sun C, Zebibula A, Zhang H, Kwok RT. K, Zhao X, Xi W, Lam JW. Y, Qian J, Tang BZ. Adv. Mater. 2018; 30: 1706856
  • 61 Dong C, Irudayaraj J. J. Phys. Chem. B 2012; 116: 12125
  • 62 Martin S, Parton RG. Nat. Rev. Mol. Cell Biol. 2006; 7: 373
  • 63 Sk B, Thakre PK, Tomar RS, Patra A. Chem. Asian J. 2017; 12: 2501
  • 64 Rakshit S, Das S, Govindaraj V, Maini R, Kumar A, Datta A. J. Phys. Chem. B 2020; 124: 10282
  • 65 Guo X, Tang B, Wu H, Wu Q, Xie Z, Yu C, Hao E, Jiao L. Mater. Chem. Front. 2021; 5: 3664
  • 66 Patra A, Sk B, Sarkar M, Kundu S. Indian Pat. Appl. 201921041228, 11.10.2019