Planta Med 2023; 89(01): 3-18
DOI: 10.1055/a-1676-9678
Biological and Pharmacological Activity
Reviews

The Role of Herbal Medicine in Cholangiocarcinoma Control: A Systematic Review

Kesara Na-Bangchang
1   Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
2   Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
,
Tullayakorn Plengsuriyakarn
1   Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
,
Juntra Karbwang
2   Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
› Author Affiliations
Supported by: NRCT National Research Council of Thailand 82-/63

Abstract

The growing incidence of cholangiocarcinoma (bile duct cancer) and limited treatment options stimulate a pressing demand for research and the development of new chemotherapeutics against cholangiocarcinoma. This study aimed to systematically review herbs and herb-derived compounds or herbal formulations that have been investigated for their anti-cholangiocarcinoma potential. Systematic literature searches were conducted in three electronic databases: PubMed, ScienceDirect, and Scopus. One hundred and twenty-three research articles fulfilled the eligibility critera and were included in the analysis (68 herbs, isolated compounds and/or synthetic analogs, 9 herbal formulations, and 119 compounds that are commonly found in several plant species). The most investigated herbs were Atractylodes lancea (Thunb.) DC. (Compositae) and Curcuma longa L. (Zingiberaceae). Only A. lancea (Thunb.) DC. (Compositae) has undergone the full process of nonclinical and clinical development to deliver the final product for clinical use. The extracts of A. lancea (Thunb.) DC. (Compositae), Garcinia hanburyi Hook.f. (Clusiaceae), and Piper nigrum L. (Piperaceae) exhibit antiproliferative activities against human cholangiocarcinoma cells (IC50 < 15 µg/mL). Cucurbitacin B and triptolide are herbal isolated compounds that exhibit the most promising activities (IC50 < 1 µM). A series of experimental studies (in vitro, in vivo, and humans) confirmed the anti-cholangiocarcinoma potential and safety profile of A. lancea (Thunb.) DC. (Compositae) and its active compounds atractylodin and β-eudesmol, including the capsule pharmaceutical of the standardized A. lancea (Thunb.) DC. (Compositae) extract. Future research should be focused on the full development of the candidate herbs to deliver products that are safe and effective for cholangiocarcinoma control.

Supporting Information



Publication History

Received: 12 July 2021

Accepted after revision: 19 October 2021

Article published online:
25 April 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Rizvi S, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17: 557-588
  • 2 Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol 2008; 24: 349-356
  • 3 Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, Roughton M, Bridgewater J. ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362: 1273-1281
  • 4 Haque MU, Ferdiousi N, Sajon SR. Anti-cancer agents derived from plant and dietary sources: a review. Int J Pharmacognosy 2016; 3: 55-66
  • 5 Mahavorasirikul W, Viyanant V, Chaijaroenkul W, Itharat A, Na-Bangchang K. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro . BMC Complement Altern Med 2010; 10: 55
  • 6 Boonyanugomol W, Hahnvajanawong C, Reutrakul V, Anantachok N. Growth Inhibitory Activity of Garcinia Hanburyi extracts on Cholangiocarcinoma Cell Lines. Srinagarind Med J 2007; 22: 278-282
  • 7 Tedasen A, Khoka A, Madla S, Sriwiriyajan S, Graidist P. Anticancer effects of piperine-free Piper nigrum extract on cholangiocarcinoma cell lines. Pharmacogn Mag 2020; 16: 28-38
  • 8 Thongdeeying P, Itharat A, Umehara K, Ruangnoo S. A novel steroid and cytotoxic constituents from Dioscorea membranacea Pierre against hepatocellular carcinoma and cholangiocarcinoma cells. J Ethnopharmacol 2016; 194: 91-97
  • 9 Amuamuta A, Plengsuriyakarn T, Na-Bangchang K. Anticholangiocarcinoma activity and toxicity of the Kaempferia galanga Linn. Rhizome ethanolic extract. BMC Complement Altern Med 2017; 17: 213
  • 10 Tritripmongkol P, Plengsuriyakarn T, Tarasuk M, Na-Bangchang K. In vitro cytotoxic and toxicological activities of ethanolic extract of Kaempferia galanga Linn. and its active component, ethyl-p-methoxycinnamate, against cholangiocarcinoma. J Integr Med 2020; 18: 326-333
  • 11 Plengsuriyakarn T, Viyanant V, Eursitthichai V, Tesana S, Chaijaroenkul W, Itharat A, Na-Bangchang K. Cytotoxicity, toxicity, and anticancer activity of Zingiber officinale Roscoe against cholangiocarcinoma. Asian Pac J Cancer Prev 2012; 13: 4597-4606
  • 12 Yano H, Mizoguchi A, Fukuda K, Haramaki M, Ogasawara S, Momosaki S, Kojiro M. The herbal medicine sho-saiko-to inhibits proliferation of cancer cell lines by inducing apoptosis and arrest at the G0/G1 phase. Cancer Res 1994; 54: 448-454
  • 13 Obchoei S, Wongkham S, Aroonkesorn A, Suebsakwong P, Suksamrarn A. Anti-cancer effect of cucurbitacin B on cholangiocarcinoma cells. The 6th International Conference on Biochemistry and Molecular Biology (BMB2018), Ranong Province, Thailand; 2018: 1 – 7.
  • 14 Tengchaisri T, Chawengkirttikul R, Rachaphaew N, Reutrakul V, Sangsuwan R, Sirisinha S. Antitumor activity of triptolide against cholangiocarcinoma growth in vitro and in hamsters. Cancer Lett 1998; 133: 169-175
  • 15 Ding X, Zhang B, Pei Q, Pan J, Huang S, Yang Y, Zhu Z, Lv Y, Zou X. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1. BMC Cancer 2014; 14: 271
  • 16 Boueroy P, Saensa-Ard S, Siripong P, Kanthawong S, Hahnvajanawong C. Rhinacanthin-C Extracted from Rhinacanthus nasutus (L.) Inhibits Cholangiocarcinoma Cell Migration and Invasion by Decreasing MMP-2, uPA, FAK and MAPK Pathways. Asian Pac J Cancer Prev 2018; 19: 3605-3613
  • 17 Puntawee S, Theerasilp M, Reabroi S, Saeeng R, Piyachaturawat P, Chairoungdua A, Nasongkla N. Solubility enhancement and in vitro evaluation of PEG-b-PLA micelles as nanocarrier of semi-synthetic andrographolide analogue for cholangiocarcinoma chemotherapy. Pharm Dev Technol 2016; 21: 437-444
  • 18 Sombut S, Bunthawong R, Sirion U, Kasemsuk T, Piyachaturawat P, Suksen K, Suksamrarn A, Saeeng R. Synthesis of 14-deoxy-11, 12-didehydroandrographolide analogues as potential cytotoxic agents for cholangiocarcinoma. Bioorg Med Chem Lett 2017; 27: 5139-5143
  • 19 Pearngam P, Kumkate S, Okada S, Janvilisri T. Andrographolide inhibits cholangiocarcinoma cell migration by down-regulation of claudin-1 via the p-38 signaling pathway. Front Pharmacol 2019; 10: 827
  • 20 Ma Q, Feng Y, Deng K, Shao H, Sui T, Zhang X, Sun X, Jin L, Ma Z, Luo G. Unique responses of hepatocellular carcinoma and cholangiocarcinoma cell lines toward cantharidin and norcantharidin. J Cancer 2018; 9: 2183-2190
  • 21 Sribuhom T, Boueroy P, Hahnvajanawong C, Phatchana R, Yenjai C. Benzoyltyramine alkaloids atalantums A–G from the peels of Atalantia monophylla and their cytotoxicity against cholangiocarcinoma cell lines. J Nat Prod 2017; 80: 403-408
  • 22 Sombatsri A, Thummanant Y, Sribuhom T, Boonmak J, Youngme S, Phusrisom S, Kukongviriyapan V, Yenjai C. New limonophyllines A–C from the stem of Atalantia monophylla and cytotoxicity against cholangiocarcinoma and HepG2 cell lines. Arch Pharm Res 2018; 41: 431-437
  • 23 Janeklang S, Nakaew A, Vaeteewoottacharn K, Seubwai W, Boonsiri P, Kismali G, Suksamrarn A, Okada S, Wongkham S. In vitro and in vivo antitumor activity of tiliacorinine in human cholangiocarcinoma. Asian Pac J Cancer Prev 2014; 15: 7473-7478
  • 24 Suphim B, Buranrat B, Prawan A, Kukongviriyapan V. Sensitivity of cholangiocarcinoma cells to chemotherapeuticagents and curcumin. Srinagarind Med J 2008; 23: 284-289
  • 25 Suphim B, Prawan A, Kukongviriyapan U, Kongpetch S, Buranrat B, Kukongviriyapan V. Redox modulation and human bile duct cancer inhibition by curcumin. Food Chem Toxicol 2010; 48: 2265-2272
  • 26 Yin S, Sokolowski K, Kunnimalaiyaan S, Gamblin TC, Kunnimalaiyaan M. Curcumin-mediated regulation of Notch1/hairy and enhancer of split-1/survivin: molecular targeting in cholangiocarcinoma. J Surg Res 2015; 198: 434-440
  • 27 Qiu C, Hu Y, Wu K, Yang K, Wang N, Ma Y, Zhu H, Zhang Y, Zhou Y, Chen C, Li S, Fu L, Zhang X, Liu Z. Synthesis and biological evaluation of allylated mono-carbonyl analogues of curcumin (MACs) as anti-cancer agents for cholangiocarcinoma. Bioorg Med Chem Lett 2016; 26: 5971-5976
  • 28 Thongsom S, Suginta W, Lee KJ, Choe H, Talabnin C. Piperlongumine induces G2/M phase arrest and apoptosis in cholangiocarcinoma cells through the ROS-JNK-ERK signaling pathway. Apoptosis 2017; 22: 1473-1484
  • 29 Chen SY, Huang HY, Lin HP, Fang CY. Piperlongumine induces autophagy in biliary cancer cells via reactive oxygen species-activated Erk signaling pathway. Int J Mol Med 2019; 44: 1687-1696
  • 30 Aneknan P, Kukongviriyapan V, Prawan A, Kongpetch S, Sripa B, Senggunprai L. Luteolin arrests cell cycling, induces apoptosis and inhibits the JAK/STAT3 pathway in human cholangiocarcinoma cells. Asian Pac J Cancer Prev 2014; 15: 5071-5076
  • 31 Kurasug B, Kukongviriyapan V, Prawan A, Yenjai C, Kongpetch S. Antitumor effects of candidone extracted from Derris indica (Lamk) Bennet in cholangiocarcinoma cells. Trop J Pharm Res 2018; 17: 1338
  • 32 Panrit L, Plengsuriyakarn T, Martviset P, Na-Bangchang K. Inhibitory activities of plumbagin on cell migration and invasion and inducing activity on cholangiocarcinoma cell apoptosis. Asian Pac J Trop Med 2018; 11: 430-435
  • 33 Promraksa B, Phetcharaburanin J, Namwat N, Techasen A, Boonsiri P, Loilome W. Evaluation of anticancer potential of Thai medicinal herb extracts against cholangiocarcinoma cell lines. PLoS One 2019; 14: e0216721
  • 34 Shen DY, Kang JH, Song W, Zhang WQ, Li WG, Zhao Y, Chen QX. Apoptosis of human cholangiocarcinoma cell lines induced by β-escin through mitochondrial caspase-dependent pathway. Phytother Res 2011; 25: 1519-1526
  • 35 Intuyod K, Priprem A, Pairojkul C, Hahnvajanawong C, Vaeteewoottacharn K, Pinlaor P, Pinlaor S. Anthocyanin complex exerts anti-cholangiocarcinoma activities and improves the efficacy of drug treatment in a gemcitabine-resistant cell line. Int J Oncol 2018; 52: 1715-1726
  • 36 Saenglee S, Senawong G, Jogloy S, Sripa B, Senawong T. Peanut testa extracts possessing histone deacetylase inhibitory activity induce apoptosis in cholangiocarcinoma cells. Biomed Pharmacother 2018; 98: 233-241
  • 37 Chaijaroenkul W, Viyanant V, Mahavorasirikul W, Na-Bangchang K. Cytotoxic activity of artemisinin derivatives against cholangiocarcinoma (CL-6) and hepatocarcinoma (Hep-G2) cell lines. Asian Pac J Cancer Prev 2011; 12: 55-59
  • 38 Mathema VB, Chaijaroenkul W, Na-Bangchang K. Cytotoxic activity and molecular targets of atractylodin in cholangiocarcinoma cells. J Pharm Pharmacol 2019; 71: 185-195
  • 39 Muhamad N, Plengsuriyakarn T, Chittasupho C, Na-Bangchang K. The potential of atractylodin-loaded PLGA nanoparticles as chemotherapeutic for cholangiocarcinoma. Asian Pac J Cancer Prev 2020; 21: 935-941
  • 40 Omar AI, Plengsuriyakarn T, Chittasupho C, Na-Bangchang K. Enhanced oral bioavailability and biodistribution of atractylodin encapsulated in PLGA nanoparticle in cholangiocarcinoma. Clin Exp Pharmacol Physiol 2020; 48: 318-328
  • 41 Kotawong K, Chaijaroenkul W, Muhamad P, Na-Bangchang K. Cytotoxic activities and effects of atractylodin and β-eudesmol on the cell cycle arrest and apoptosis on cholangiocarcinoma cell line. J Pharmacol Sci 2018; 136: 51-56
  • 42 Mathema VB, Chaijaroenkul W, Karbwang J, Na-Bangchang K. Growth inhibitory effect of β-eudesmol on cholangiocarcinoma cells and its potential suppressive effect on heme oxygenase-1 production, STAT1/3 activation, and NF-κB downregulation. Clin Exp Pharmacol Physiol 2017; 44: 1145-1154
  • 43 Rattanata N, Klaynongsruang S, Daduang S, Tavichakorntrakool R, Limpaiboon T, Lekphrom R, Boonsiri P, Daduang J. Inhibitory Effects of Gallic Acid Isolated from Caesalpinia mimosoides Lam. on Cholangiocarcinoma Cell Lines and Foodborne Pathogenic Bacteria. Asian Pac J Cancer Prev 2016; 17: 1341-1345
  • 44 Songsiang U, Thongthoom T, Zeekpudsa P, Kukongviriyapan V, Boonyarat C, Wangboonskul J, Yenjai C. Antioxidant activity and cytotoxicity against cholangiocarcinoma of carbazoles and coumarins from Clausena harmandiana. Sci. Asia 2012; 38: 75-81
  • 45 Gu Y, Xiao L, Ming Y, Zheng Z, Li W. Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo . Int J Oncol 2016; 48: 1868-1876
  • 46 Senggunprai L, Thammaniwit W, Kukongviriyapan V, Prawan A, Kaewseejan N, Siriamornpun S. Cratoxylum formosum extracts inhibit growth and metastasis of cholangiocarcinoma cells by modulating the NF-κB and STAT3 pathways. Nutr Cancer 2016; 68: 328-341
  • 47 Saraphon C, Boonloh K, Kukongviriyapan V, Yenjai C. Cytotoxic flavonoids from the fruits of Derris indica . J Asian Nat Prod Res 2017; 19: 1198-1203
  • 48 Decharchoochart P, Suthiwong J, Samatiwat P, Kukongviriyapan V, Yenjai C. Cytotoxicity of compounds from the fruits of Derris indica against cholangiocarcinoma and HepG2 cell lines. J Nat Med 2014; 68: 730-736
  • 49 Svasti J, Srisomsap C, Subhasitanont P, Keeratichamroen S, Chokchaichamnankit D, Ngiwsara L, Chimnoi N, Pisutjaroenpong S, Techasakul S, Chen ST. Proteomic profiling of cholangiocarcinoma cell line treated with pomiferin from Derris malaccensis . Proteomics 2005; 5: 4504-4509
  • 50 Chokchaichamnankit D, Kongjinda V, Khunnawutmanotham N, Chimnoi N, Pisutcharoenpong S, Techasakul S. Prenylated flavonoids from the leaves of Derris malaccensis and their cytotoxicity. Nat Prod Commun 2011; 6: 1103-1106
  • 51 Hahnvajanawong C, Boonyanugomol W, Nasomyon T, Loilome W, Namwat N, Anantachoke N, Tassaneeyakul W, Sripa B, Namwat W, Reutrakul V. Apoptotic activity of caged xanthones from Garcinia hanburyi in cholangiocarcinoma cell lines. World J Gastroenterol 2010; 16: 2235-2243
  • 52 Hahnvajanawong C, Ketnimit S, Pattanapanyasat K, Anantachoke N, Sripa B, Pinmai K, Seubwai W, Reutrakul V. Involvement of p53 and nuclear factor-kappaB signaling pathway for the induction of G1-phase cell cycle arrest of cholangiocarcinoma cell lines by isomorellin. Biol Pharm Bull 2012; 35: 1914-1925
  • 53 Assawasuparerk K, Vanichviriyakit R, Chotwiwatthanakun C, Nobsathian S, Rawangchue T, Wittayachumnankul B. Scabraside D Extracted from Holothuria scabra Induces Apoptosis and Inhibits Growth of Human Cholangiocarcinoma Xenografts in Mice. Asian Pac J Cancer Prev 2016; 17: 511-517
  • 54 Leardkamolkarn V, Tiamyuyen S, Sripanidkulchai BO. Pharmacological activity of Kaempferia parviflora extract against human bile duct cancer cell lines. Asian Pac J Cancer Prev 2009; 10: 695-698
  • 55 Jaidee R, Kongpetch S, Prawan A, Senggunprai L. Quercetin enhances phenformin in inhibition of cholangiocarcinoma cell growth. Srinagarind Med J 2020; 35: 249-254
  • 56 Hemtasin C, Kanokmedhakul S, Kanokmedhakul K, Hahnvajanawong C, Soytong K, Prabpai S, Kongsaeree P. Cytotoxic pentacyclic and tetracyclic aromatic sesquiterpenes from Phomopsis archeri . J Nat Prod 2011; 74: 609-613
  • 57 Li Y, Li D, Chen J, Wang S. A polysaccharide from Pinellia ternata inhibits cell proliferation and metastasis in human cholangiocarcinoma cells by targeting of Cdc42 and 67 kDa Laminin Receptor (LR). Int J Biol Macromol 2016; 93: 520-525
  • 58 Rahman HS. Phytochemical analysis and antioxidant and anticancer activities of mastic gum resin from Pistacia atlantica subspecies kurdica. Onco Targets Ther 2018; 11: 4559-4572
  • 59 Kim JH, Liu L, Lee SO, Kim YT, You KR, Kim DG. Susceptibility of cholangiocarcinoma cells to parthenolide-induced apoptosis. Cancer Res 2005; 65: 6312-6320
  • 60 Suriyo T, Pholphana N, Rangkadilok N, Thiantanawat A, Watcharasit P, Satayavivad J. Andrographis paniculata extracts and major constituent diterpenoids inhibit growth of intrahepatic cholangiocarcinoma cells by inducing cell cycle arrest and apoptosis. Planta Med 2014; 80: 533-543
  • 61 Hu H, Tan C, Liu X, Luo F, Li K. Upregulation of the MCL-1S protein variant following dihydroartemisinin treatment induces apoptosis in cholangiocarcinoma cells. Oncol Lett 2015; 10: 3545-3550
  • 62 Kotawong K, Chaijaroenkul W, Roytrakul S, Phaonakrop N, Na-Bangchang K. Screening of molecular targets of action of atractylodin in cholangiocarcinoma by applying proteomic and metabolomic approaches. Metabolites 2019; 9: 260
  • 63 Puthdee N, Vaeteewoottacharn K, Seubwai W, Wonkchalee O, Kaewkong W, Juasook A, Pinlaor S, Pairojkul C, Wongkham C, Okada S, Boonmars T, Wongkham S. Establishment of an allo-transplantable hamster cholangiocarcinoma cell line and its application for in vivo screening of anti-cancer drugs. Korean J Parasitol 2013; 51: 711-717
  • 64 He W, Wang B, Zhuang Y, Shao D, Sun K, Chen J. Berberine inhibits growth and induces G1 arrest and apoptosis in human cholangiocarcinoma QBC939 cells. J Pharmacol Sci 2012; 119: 341-348
  • 65 Sakonsinsiri C, Kaewlert W, Armartmuntree N, Thanan R, Pakdeechote P. Anti-cancer activity of asiatic acid against human cholangiocarcinoma cells through inhibition of proliferation and induction of apoptosis. Cell Mol Biol (Noisy-le-grand) 2018; 64: 28-33
  • 66 Yin DL, Liang YJ, Zheng TS, Song RP, Wang JB, Sun BS, Pan SH, Qu LD, Liu JR, Jiang HC, Liu LX. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma. Sci Rep 2016; 6: 32167
  • 67 Zhang A, He W, Shi H, Huang X, Ji G. Natural compound oblongifolin C inhibits autophagic flux, and induces apoptosis and mitochondrial dysfunction in human cholangiocarcinoma QBC939 cells. Mol Med Rep 2016; 14: 3179-3183
  • 68 Zou Y, Li R, Kuang D, Zuo M, Li W, Tong W, Jiang L, Zhou M, Chen Y, Gong W, Liu L, Tou F. Galangin inhibits cholangiocarcinoma cell growth and metastasis through downregulation of microRNA-21 expression. Biomed Res Int 2020; 2020: 5846938
  • 69 Tanjak P, Thiantanawat A, Watcharasit P, Satayavivad J. Genistein reduces the activation of AKT and EGFR, and the production of IL6 in cholangiocarcinoma cells involving estrogen and estrogen receptors. Int J Oncol 2008; 53: 177-188
  • 70 Sae-Lao T, Luplertlop N, Janvilisri T, Tohtong R, Bates DO, Wongprasert K. Sulfated galactans from the red seaweed Gracilaria fisheri exerts anti-migration effect on cholangiocarcinoma cells. Phytomedicine 2017; 36: 59-67
  • 71 Zhang FH, Ren HY, Shen JX, Zhang XY, Ye HM, Shen DY. Magnolol suppresses the proliferation and invasion of cholangiocarcinoma cells via inhibiting the NF-κB signaling pathway. Biomed Pharmacother 2017; 94: 474-480
  • 72 Kim JH, Liu L, Lee SO, Kim YT, You KR, Kim DG. Susceptibility of cholangiocarcinoma cells to parthenolide-induced apoptosis. Cancer Res 2005; 65: 6312-6320
  • 73 Roncoroni L, Elli L, Dolfini E, Erba E, Dogliotti E, Terrani C, Doneda L, Grimoldi MG, Bardella MT. Resveratrol inhibits cell growth in a human cholangiocarcinoma cell line. Liver Int 2008; 28: 1426-1436
  • 74 Frampton GA, Lazcano EA, Li H, Mohamad A, DeMorrow S. Resveratrol enhances the sensitivity of cholangiocarcinoma to chemotherapeutic agents. Lab Invest 2010; 90: 1325-1338
  • 75 Hahnvajanawong C, Ketnimit S, Boonyanugomol W, Pattanapanyasat K, Chamgramol Y, Sripa B, Namwatf N, Pinmaig K, Tassaneeyakulh W, Reutrakul V. Inhibition of cell cycle progression and apoptotic activity of resveratrol in human intrahepatic cholangiocarcinoma cell lines. Asian Biomedicine 2011; 5: 775-786
  • 76 Thongchot S, Ferraresi A, Vidoni C, Loilome W, Yongvanit P, Namwat N, Isidoro C. Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells. Cancer Lett 2018; 430: 160-171
  • 77 Roncoroni L, Elli L, Braidotti P, Tosi D, Vaira V, Tacchini L, Lombardo V, Branchi F, Scricciolo A, Doneda L. Transglutaminase 2 mediates the cytotoxicity of resveratrol in a human cholangiocarcinoma and gallbladder cancer cell lines. Nutr Cancer 2018; 70: 761-769
  • 78 Junking M, Rattanaburee T, Panya A, Budunova I, Haegeman G, Yenchitsomanus PT. Anti-proliferative effects of compound a and its effect in combination with cisplatin in cholangiocarcinoma cells. Asian Pac J Cancer Prev 2020; 21: 2673-2681
  • 79 Yang X, Wang S, Mu Y, Zheng Y. Schisandrin B inhibits cell proliferation and induces apoptosis in human cholangiocarcinoma cells. Oncol Rep 2016; 36: 1799-1806
  • 80 Li Y, Ke Y, Zou H, Wang K, Huang S, Rengarajan T, Wang L. Gold nanoparticles synthesized from Strychni semen and its anticancer activity in cholangiocarcinoma cell (KMCH-1). Artif Cells Nanomed Biotechnol 2019; 47: 1610-1616
  • 81 Naus PJ, Henson R, Bleeker G, Wehbe H, Meng F, Patel T. Tannic acid synergizes the cytotoxicity of chemotherapeutic drugs in human cholangiocarcinoma by modulating drug efflux pathways. J Hepatol 2007; 46: 222-229
  • 82 Lang M, Henson R, Braconi C, Patel T. Epigallocatechin-gallate modulates chemotherapy-induced apoptosis in human cholangiocarcinoma cells. Liver Int 2009; 29: 670-677
  • 83 Wonkchalee N, Boonmars T, Laummaunwai P, Aromdee C, Hahnvajanawong C, Wu Z, Sriraj P, Aukkanimart R, Chamgramol Y, Pairojkul C, Juasook A, Sudsarn P. A combination of praziquantel and the traditional medicinal plant on Opisthorchis viverrini infection and cholangiocarcinoma in a hamster model. Parasitol Res 2013; 112: 4211-4219
  • 84 Thatte U, Bagadey S, Dahanukar S. Modulation of programmed cell death by medicinal plants. Cell Mol Biol (Noisy-le-grand) 2000; 46: 199-214
  • 85 Na-Bangchang K, Plengsuriyakarn T, Karbwang J. Research and development of Atractylodes lancea (Thunb.) DC. as a promising candidate for cholangiocarcinoma chemotherapeutics. Evid Based Complement Alternat Med 2017; 2017: 5929234
  • 86 Tshering G, Plengsuriyakarn T, Na-Bangchang K, Pimtong W. Embryotoxicity evaluation of atractylodin and β-eudesmol using the zebrafish model. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239: 108869
  • 87 Prakobwong S, Gupta SC, Kim JH, Sung B, Pinlaor P, Hiraku Y, Wongkham S, Sripa B, Pinlaor S, Aggarwal BB. Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways. Carcinogenesis 2011; 32: 1372-1380
  • 88 Panichakul T, Intachote P, Wongkajorsilp A, Sripa B, Sirisinha S. Triptolide sensitizes resistant cholangiocarcinoma cells to TRAIL-induced apoptosis. Anticancer Res 2006; 26: 259-265
  • 89 Leelawat S, Leelawat K. Molecular mechanisms of cholangiocarcinoma cell inhibition by medicinal plants. Oncol Lett 2017; 13: 961-966
  • 90 Kukongviriyapan V, Phromsopha N, Tassaneeyakul W, Kukongviriyapan U, Sripa B, Hahnvajanawong V, Bhudhisawasdi V. Inhibitory effects of polyphenolic compounds on human arylamine N-acetyltransferase 1 and 2. Xenobiotica 2006; 36: 15-28
  • 91 Zhao X, Wen F, Wang W, Lu Z, Guo Q. Actinidia arguta (Hardy Kiwi) root extract exerts anti-cancer effects via Mcl-1-mediated apoptosis in cholangiocarcinoma. Nutr Cancer 2019; 71: 246-256
  • 92 Huang GL, Shen DY, Cai CF, Zhang QY, Ren HY, Chen QX. β-escin reverses multidrug resistance through inhibition of the GSK3β/β-catenin pathway in cholangiocarcinoma. World J Gastroenterol 2015; 21: 1148-1157
  • 93 Xie K, Nian J, Zhu X, Geng X, Liu F. Modulatory role of garlicin in migration and invasion of intrahepatic cholangiocarcinoma via PI3K/AKT pathway. Int J Clin Exp Pathol 2015; 8: 14028-14033
  • 94 Müller A, Barat S, Chen X, Bui KC, Bozko P, Malek NP, Plentz RR. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines. Int J Oncol 2016; 48: 2025-2034
  • 95 Xiao M, Fan X, Fu Y, Zhou Y, Liu S, Peng S. Deoxypodophyllotoxin induces cell cycle arrest and apoptosis in human cholangiocarcinoma cells. Oncol Lett 2018; 16: 3177-3182
  • 96 Thongchot S, Vidoni C, Ferraresi A, Loilome W, Yongvanit P, Namwat N, Isidoro C. Dihydroartemisinin induces apoptosis and autophagy-dependent cell death in cholangiocarcinoma through a DAPK1-BECLIN1 pathway. Mol Carcinog 2018; 57: 1735-1750
  • 97 Hu H, Wang Z, Tan C, Liu X, Zhang H, Li K. Dihydroartemisinin/miR-29b combination therapy increases the pro-apoptotic effect of dihydroartemisinin on cholangiocarcinoma cell lines by regulating Mcl-1 expression. Adv Clin Exp Med 2020; 29: 911-919
  • 98 Acharya B, Chaijaroenkul W, Na-Bangchang K. Atractylodin inhibited the migration and induced autophagy in cholangiocarcinoma cells via PI3K/AKT/mTOR and p38MAPK signalling pathways. J Pharm Pharmacol 2021; 73: 1191-1200 DOI: 10.1093/jpp/rgab036.
  • 99 Kotawong K, Chaijaroenkul W, Roytrakul S, Phaonakrop N, Na-Bangchang K. Proteomics analysis for identification of potential cell signaling pathways and protein targets of actions of atractylodin and β-eudesmol against cholangiocarcinoma. Asian Pac J Cancer Prev 2020; 21: 621-628
  • 100 Kotawong K, Chajaroenkul W, Roytrakul S, Phaonakrop N, Na-Bangchang K. The proteomics and metabolomics analysis for screening the molecular targets of action of β-eudesmol in cholangiocarcinoma. Asian Pac J Cancer Prev 2021; 22: 909-918
  • 101 Wutka A, Palagani V, Barat S, Chen X, El Khatib M, Götze J, Belahmer H, Zender S, Bozko P, Malek NP, Plentz RR. Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis. PLoS One 2014; 9: e95605
  • 102 Lee GR, Jang SH, Kim CJ, Kim AR, Yoon DJ, Park NH, Han IS. Capsaicin suppresses the migration of cholangiocarcinoma cells by down-regulating matrix metalloproteinase-9 expression via the AMPK-NF-κB signaling pathway. Clin Exp Metastasis 2014; 31: 897-907
  • 103 Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM. Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition of chemotherapeutic-induced autophagy. PLoS One 2015; 10: e0121538
  • 104 Zhong F, Yang J, Tong ZT, Chen LL, Fan LL, Wang F, Zha XL, Li J. Guggulsterone inhibits human cholangiocarcinoma Sk-ChA-1 and Mz-ChA-1 cell growth by inducing caspase-dependent apoptosis and downregulation of survivin and Bcl-2 expression. Oncol Lett 2015; 10: 1416-1422
  • 105 Zhong F, Tong ZT, Fan LL, Zha LX, Wang F, Yao MQ, Gu KS, Cao YX. Guggulsterone-induced apoptosis in cholangiocarcinoma cells through ROS/JNK signaling pathway. Am J Cancer Res 2016; 6: 226-237
  • 106 Khoontawad J, Intuyod K, Rucksaken R, Hongsrichan N, Pairojkul C, Pinlaor P, Boonmars T, Wongkham C, Jones A, Plieskatt J, Potriquet J, Bethony JM, Mulvenna J, Pinlaor S. Discovering proteins for chemoprevention and chemotherapy by curcumin in liver fluke infection-induced bile duct cancer. PLoS One 2018; 13: e0207405
  • 107 San TT, Khaenam P, Prachayasittikul V, Sripa B, Kunkeaw N, Chan-On W. Curcumin enhances chemotherapeutic effects and suppresses ANGPTL4 in anoikis-resistant cholangiocarcinoma cells. Heliyon 2020; 6: e03255
  • 108 Prakobwong S, Khoontawad J, Yongvanit P, Pairojkul C, Hiraku Y, Sithithaworn P, Pinlaor P, Aggarwal BB, Pinlaor S. Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. Int J Cancer 2011; 129: 88-100
  • 109 Bisht S, Nolting J, Wenzel J, Brossart P, Feldmann G. EF24 suppresses cholangiocellular carcinoma progression, inhibits STAT3 phosphorylation, and induces apoptosis via ROS-mediated oxidative stress. J Oncol 2019; 2019: 8701824
  • 110 Sato A, Kudo C, Yamakoshi H, Uehara Y, Ohori H, Ishioka C, Iwabuchi Y, Shibata H. Curcumin analog GO-Y030 is a novel inhibitor of IKKβ that suppresses NF-κB signaling and induces apoptosis. Cancer Sci 2011; 102: 1045-1051
  • 111 Boueroy P, Hahnvajanawong C, Boonmars T, Saensa-Ard S, Wattanawongdon W, Kongsanthia C, Salao K, Wongwajana S, Anantachoke N, Reutrakul V. Synergistic effect of forbesione from Garcinia hanburyi in combination with 5-fluorouracil on cholangiocarcinoma. Asian Pac J Cancer Prev 2017; 18: 3343-3351
  • 112 Hahnvajanawong C, Wattanawongdon W, Chomvarin C, Anantachoke N, Kanthawong S, Sripa B, Reutrakul V. Synergistic effects of isomorellin and forbesione with doxorubicin on apoptosis induction in human cholangiocarcinoma cell lines. Cancer Cell Int 2014; 14: 68
  • 113 Wang Y, Jiang W, Li C, Xiong X, Guo H, Tian Q, Li X. Autophagy suppression accelerates apoptosis induced by norcantharidin in cholangiocarcinoma. Pathol Oncol Res 2020; 26: 1697-1707
  • 114 Xu D, Ma Y, Zhao B, Li S, Zhang Y, Pan S, Wu Y, Wang J, Wang D, Pan H, Liu L, Jiang H. Thymoquinone induces G2/M arrest, inactivates PI3K/Akt and nuclear factor-κB pathways in human cholangiocarcinomas both in vitro and in vivo . Oncol Rep 2014; 31: 2063-2070
  • 115 Talabnin C, Talabnin K, Wongkham S. Enhancement of piperlongumine chemosensitivity by silencing heme oxygenase-1 expression in cholangiocarcinoma cell lines. Oncol Lett 2020; 20: 2483-2492
  • 116 Kittiratphatthana N, Kukongviriyapan V, Prawan A, Senggunprai L. Luteolin induces cholangiocarcinoma cell apoptosis through the mitochondrial-dependent pathway mediated by reactive oxygen species. J Pharm Pharmacol 2016; 68: 1184-1192
  • 117 Zhang J, Su G, Tang Z, Wang L, Fu W, Zhao S, Ba Y, Bai B, Yue P, Lin Y, Bai Z, Hu J, Meng W, Qiao L, Li X, Xie X. Curcumol exerts anticancer effect in cholangiocarcinoma cells via down-regulating CDKL3. Front Physiol 2018; 9: 234
  • 118 Seubwai W, Vaeteewoottacharn K, Hiyoshi M, Suzu S, Puapairoj A, Wongkham C, Okada S, Wongkham S. Cepharanthine exerts antitumor activity on cholangiocarcinoma by inhibiting NF-kappaB. Cancer Sci 2010; 101: 1590-1595
  • 119 Uthaisar K, Seubwai W, Srikoon P, Vaeteewoottacharn K, Sawanyawisuth K, Okada S, Wongkham S. Cepharanthine suppresses metastatic potential of human cholangiocarcinoma cell lines. Asian Pac J Cancer Prev 2012; 13: 149-154
  • 120 Klungsaeng S, Kukongviriyapan V, Prawan A, Kongpetch S, Senggunprai L. Cucurbitacin B induces mitochondrial-mediated apoptosis pathway in cholangiocarcinoma cells via suppressing focal adhesion kinase signaling. Naunyn Schmiedebergs Arch Pharmacol 2019; 392: 271-278
  • 121 Plengsuriyakarn T, Viyanant V, Eursitthichai V, Picha P, Kupradinun P, Itharat A, Na-Bangchang K. Anticancer activities against cholangiocarcinoma, toxicity and pharmacological activities of Thai medicinal plants in animal models. BMC Complement Altern Med 2012; 12: 23
  • 122 Koonrungsesomboon N, Na-Bangchang K, Karbwang J. Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC. Asian Pac J Trop Med 2014; 7: 421-428
  • 123 Jun X, Fu P, Lei Y, Cheng P. Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. Chin Med 2018; 13: 59
  • 124 Na-Bangchang K, Kulma I, Plengsuriyakarn T, Tharavanij T, Kotawng K, Chemung A, Muhamad N, Karbwang J. Phase I clinical trial to evaluate the safety and pharmacokinetics of capsule formulation of the standardized extract of Atractylodes lancea . J Tradit Complement Med 2021; 11: 343-355
  • 125 Plengsuriyakarn T, Matsuda N, Karbwang J, Viyanant V, Hirayama K, Na-Bangchang K. Anticancer activity of Atractylodes lancea (Thunb.) DC in a hamster model and application of PET-CT for early detection and monitoring progression of cholangiocarcinoma. Asian Pac J Cancer Prev 2015; 16: 6279-6284
  • 126 Rattanathada T, Plengsuriyakarn T, Asasujarit R, Cheoymang A, Karbwang J, Na-Bangchang K. Development of oral pharmaceutical formulation of standardized crude ethanolic extract of Atractylodes lancea (Thunb.) DC. JCPS 2020; 29: 280-293
  • 127 Plengsuriyakarn T, Karbwang J, Na-Bangchang K. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Clin Exp Pharmacol Physiol 2015; 42: 293-304
  • 128 Plengsuriyakarn T, Viyanant V, Eursitthichai V, Itharat A, Na-Bangchang K. In vitro investigations on the potential roles of Thai medicinal plants in treatment of cholangiocarcinoma. Int J Pharm Pharmacol 2012; 2: 1-12
  • 129 Martviset P, Chaijaroenkul W, Muhamad P, Na-Bangchang K. Bioactive constituents isolated from Atractylodes lancea (Thunb.) DC. rhizome exhibit synergistic effect against cholangiocarcinoma cell. J Exp Pharmacol 2018; 10: 59-64
  • 130 Kimura M, Nojima H, Muroi M, Kimura I. Mechanism of the blocking action of beta-eudesmol on the nicotinic acetylcholine receptor channel in mouse skeletal muscles. Neuropharmacology 1991; 30: 835-841
  • 131 Tsuneki H, Ma EL, Kobayashi S, Sekizaki N, Maekawa K, Sasaoka T, Wang MW, Kimura I. Antiangiogenic activity of beta-eudesmol in vitro and in vivo . Eur J Pharmacol 2005; 512: 105-115
  • 132 Ma EL, Li YC, Tsuneki H, Xiao JF, Xia MY, Wang MW, Kimura I. Beta-eudesmol suppresses tumour growth through inhibition of tumour neovascularisation and tumour cell proliferation. J Asian Nat Prod Res 2008; 10: 159-167
  • 133 Mazzio EA, Soliman KF. In vitro screening of tumoricidal properties of international medicinal herbs: part II. Phytother Res 2010; 24: 1813-1824
  • 134 Zhao M, Wang Q, Ouyang Z, Han B, Wang W, Wei Y, Wu Y, Yang B. Selective fraction of Atractylodes lancea (Thunb.) DC. and its growth inhibitory effect on human gastric cancer cells. Cytotechnology 2014; 66: 201-208
  • 135 Masuda Y, Kadokura T, Ishii M, Takada K, Kitajima J. Hinesol, a compound isolated from the essential oils of Atractylodes lancea rhizome, inhibits cell growth and induces apoptosis in human leukemia HL-60 cells. J Nat Med 2015; 69: 332-339
  • 136 Contrera JF, Matthews EJ, Kruhlak NL, Benz RD. Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose. Regul Toxicol Pharmacol 2004; 40: 185-206
  • 137 Kulma I, Panrit L, Plengsuriyakarn T, Chaijaroenkul W, Warathumpitak S, Na-Bangchang K. A randomized placebo-controlled phase I clinical trial to evaluate the immunomodulatory activities of Atractylodes lancea (Thunb.) DC. in healthy Thai subjects. BMC Complement Med Ther 2021; 21: 61
  • 138 Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, Zhai G. Oral bioavailability of curcumin: problems and advancements. J Drug Target 2016; 24: 694-702
  • 139 Jia B, Li S, Hu X, Zhu G, Chen W. Recent research on bioactive xanthones from natural medicine: Garcinia hanburyi . AAPS PharmSciTech 2015 2015; 16: 742-758
  • 140 Chi Y, Zhan XK, Yu H, Xie GR, Wang ZZ, Xiao W, Wang YG, Xiong FX, Hu JF, Yang L, Cui CX, Wang JW. An open-labeled, randomized, multicenter phase II a study of gambogic acid injection for advanced malignant tumors. Chin Med J (Engl) 2013; 126: 1642-1646
  • 141 Augustin Y, Staines HM, Krishna S. Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing. Pharmacol Ther 2020; 216: 107706
  • 142 Prasad S, Tyagi AK. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract 2015; 2015: 142979
  • 143 Plengsuriyakarn T, Na-Bangchang K. Preclinical toxicology and anticholangiocarcinoma activity of oral formulation of standardized extract of Zingiber Officinale . Planta Med 2021; 86: 104-112
  • 144 Sareer O, Ahmad S, Umar S. Andrographis paniculata: a critical appraisal of extraction, isolation and quantification of andrographolide and other active constituents. Nat Prod Res 2014; 28: 2081-2101
  • 145 Gupta S, Mishra KP, Ganju L. Broad-spectrum antiviral properties of andrographolide. Arch Virol 2017; 162: 611-623
  • 146 Islam MT. Andrographolide, a new hope in the prevention and treatment of metabolic syndrome. Front Pharmacol 2017; 8: 571
  • 147 Yang SL, Kuo FH, Chen PN, Hsieh YH, Yu NY, Yang WE, Hsieh MJ, Yang SF. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression. Oncotarget 2017; 8: 105860-105872
  • 148 Lim JC, Chan TK, Ng DS, Sagineedu SR, Stanslas J, Wong WS. Andrographolide and its analogues: versatile bioactive molecules for combating inflammation and cancer. Clin Exp Pharmacol Physiol 2012; 39: 300-310
  • 149 Mishra SK, Tripathi S, Shukla A, Oh SH, Kim HM. Andrographolide and analogues in cancer prevention. Front Biosci (Elite Ed) 2015; 7: 255-266
  • 150 Yearsley C. Thailand approves asian herb andrographis to treat COVID-19. HerbalGram 2021; 129: 35-36
  • 151 Sa-Ngiamsuntorn K, Suksatu A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, Charoensutthivarakul S, Wongtrakoongate P, Pitiporn S, Chaopreecha J, Kongsomros S, Jearawuttanakul K, Wannalo W, Khemawoot P, Chutipongtanate S, Borwornpinyo S, Thitithanyanont A, Hongeng S. Anti-SARS-CoV-2 activity of andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J Nat Prod 2021; 84: 1261-1270
  • 152 Worakunphanich W, Thavorncharoensap M, Youngkong S, Thadanipon K, Thakkinstian A. Safety of Andrographis paniculata: A systematic review and meta-analysis. Pharmacoepidemiol Drug Saf 2010; 30: 727-739
  • 153 Hahnvajanawong C, Ketnimit S, Boonyanugomol W, Pattanapanyasat K, Chamgramol Y, Sripa B, Namwatf N, Pinmaig K, Tassaneeyakulh W, Reutrakul V. Inhibition of cell cycle progression and apoptotic activity of resveratrol in human intrahepatic cholangiocarcinoma cell lines. Asian Biomed 2011; 5: 775-786
  • 154 Friedman JR, Nolan NA, Brown KC, Miles SL, Akers AT, Colclough KW, Seidler JM, Rimoldi JM, Valentovic MA, Dasgupta P. Anticancer activity of natural and synthetic capsaicin analogs. J Pharmacol Exp Ther 2018; 364: 462-473
  • 155 Saif MW, Lansigan F, Ruta S, Lamb L, Mezes M, Elligers K, Grant N, Jiang ZL, Liu SH, Cheng YC. Phase I study of the botanical formulation PHY906 with capecitabine in advanced pancreatic and other gastrointestinal malignancies. Phytomedicine 2010; 17: 161-169
  • 156 Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, McKenzie JE. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021; 372: n160