Planta Med 2022; 88(13): 1209-1222
DOI: 10.1055/a-1671-5525
Natural Product Chemistry and Analytical Studies
Original Papers

Cyanogenesis in Aralia spinosa (Araliaceae)[ # ]

University of Münster, Institute of Pharmaceutical Biology and Phytochemistry (IPBP), Münster, Germany
,
Jandirk Sendker
University of Münster, Institute of Pharmaceutical Biology and Phytochemistry (IPBP), Münster, Germany
,
Lisa Kastner
University of Münster, Institute of Pharmaceutical Biology and Phytochemistry (IPBP), Münster, Germany
,
University of Münster, Institute of Pharmaceutical Biology and Phytochemistry (IPBP), Münster, Germany
› Author Affiliations

Abstract

A systematic survey of Aralia spinosa (Araliaceae), covering an entire growing season and including aboveground organs at various developmental stages, revealed that only about half of all samples collected showed cyanogenesis. Cyanogenesis was detected in inflorescences and leaves but is apparently restricted to certain harvest times or developmental stages. The structurally unusual triglochinin, characterized by a hex-2-enedioic acid partial structure, was the only cyanogenic glycoside detected. This is the first description of triglochinin in this species and in the family of Araliaceae. Triglochinin is biogenetically derived from tyrosine, which is in good agreement with the few cyanogenic glycosides previously detected in members of the Araliaceae family. Triglochinin was identified, characterized, and quantified by modern chromatographic methods, and the amount of enzymatically releasable hydrocyanic acid was determined qualitatively and quantitatively. Two isomers of triglochinin were detected chromatographically at minor levels. The isomeric pattern agreed well with literature data from other triglochinin-containing plants. This was confirmed in the two species, Triglochin maritima and Thalictrum aquilegiifolium, which were comparatively studied. In the case of A. spinosa, inflorescence buds harvested in July showed the highest content of triglochinin, just under 0.2% on a dry weight basis. The detection of triglochinin adds to the knowledge of toxicological properties and the dereplication of U(H)PLC/MS² data provides a comprehensive phytochemical profile of A. spinosa.

# Dedicated to Prof. Dr. A. Nahrstedt (*1940 2016) on the 5th anniversary of his death. He made a major scientific contribution to the knowledge of cyanogenic glycosides in plants and insects.


Supporting Information



Publication History

Received: 03 May 2021

Accepted after revision: 11 October 2021

Article published online:
16 November 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gleadow RM, Møller BL. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annu Rev Plant Biol 2014; 65: 155-185
  • 2 Lechtenberg M. Cyanogenic Glycosides and Biogenetically Related Compounds in Higher Plants and Animals. eLS 2021; 2: 1-18 DOI: 10.1002/9780470015902.a0029316.
  • 3 Yulvianti M, Zidorn C. Chemical diversity of plant cyanogenic glycosides: An overview of reported natural products. Molecules 2021; 26: 719
  • 4 Zagrobelny M, Jensen MK, Vogel H, Feyereisen R, Bak S. Evolution of the biosynthetic pathway for cyanogenic glucosides in Lepidoptera. J Mol Evol 2018; 86: 379-394
  • 5 Zagrobelny M, de Castro ÉCP, Møller BL, Bak S. Cyanogenesis in arthropods: From chemical warfare to nuptial gifts. Insects 2018; 9: 51
  • 6 Gibbs RD. Chemotaxonomy of Flowering Plants. Volume III (Orders). Montreal: McGill-Queenʼs Univ. Press; 1974: 1803-1804
  • 7 Miller RE, Tuck KL. The rare cyanogen proteacin, and dhurrin, from foliage of Polyscias australiana, a tropical Araliaceae. Phytochemistry 2013; 93: 210-215
  • 8 Moore G, Glenn SD, Ma J. Distribution of the native Aralia spinosa and non-native Aralia elata (Araliaceae) in the northeastern United States. Rhodora 2009; 111: 145-154
  • 9 Connor K. Aralia spinosa L.: Araliaceae. In: Francis JK. ed. Wildland shrubs of the United States and its territories: Thamnic descriptions, Volume 1. Fort Collins, CO: U. S. Department of Agriculture, Forest Service; 2004: 40-42
  • 10 Seigler DS. Plants of the northeastern United States that produce cyanogenic compounds. Econ Bot 1976; 30: 395
  • 11 Hegnauer R. Chemotaxonomie der Pflanzen: Eine Übersicht über die Verbreitung und die systematische Bedeutung der Pflanzenstoffe. Band 3: Dicotyledoneae: Acanthaceae – Cyrillaceae, Vol. 18. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften. Basel, s. l.: Birkhäuser Basel; 1964
  • 12 Hegnauer R. Chemotaxonomie der Pflanzen: Nachträge zu Band 3 und Band 4 (Acanthaceae bis Lythraceae), Vol. 30. Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften Chemische Reihe. Basel: Birkhäuser; 1989
  • 13 Yoo G, Lee T, Lee J, Kang K, Yang H, Park Y, Kim S, Kim S. Simultaneous determination of two diterpenoids, continentalic acid and kaurenoic acid, in the water extract of Aralia continentalis and their wound-healing activity. Pharmacogn Mag 2020; 16: 745
  • 14 Li Y, Dai M, Wang L, Wang G. Polysaccharides and glycosides from Aralia echinocaulis protect rats from arthritis by modulating the gut microbiota composition. J Ethnopharmacol 2021; 269: 113749
  • 15 Li Y, Park J, Wu Y, Cui J, Jia N, Xi M, Wen A. Identification of AMPK activator from twelve pure compounds isolated from Aralia taibaiensis: implication in antihyperglycemic and hypolipidemic activities. Korean J Physiol Pha 2017; 21: 279-286
  • 16 Committee on Herbal Medicinal Products. EMA/HMPC/321233/2012 Corr.1. Community herbal monograph on Panax ginseng C.A.Meyer, radix (March 25, 2014). Accessed November 9, 2021 at: https://www.ema.europa.eu/en/documents/herbal-monograph/final-community-herbal-monograph-panax-ginseng-ca-meyer-radix_en.pdf
  • 17 Committee on Herbal Medicinal Products. EMA/HMPC/325716/2017. European Union herbal monograph on Hedera helix L., folium (November 21, 2017). Accessed November 9, 2021 at: https://www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-hedera-helix-l-folium-revision-2_en.pdf
  • 18 Feigl F, Anger V. Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 1966; 91: 282-284
  • 19 Brinker AM, Seigler DS. Methods for the detection and quantitative determination of cyanide in plant material. Phytochemical bulletin 1989; 21: 24-31
  • 20 Nashida T, Shiraishi T, Uda Y. Enzymatic analysis of cyanogenic glycosides. II. A simple method by using a microdiffusional apparatus. Chem Pharm Bull (Tokyo) 1988; 36: 249-253
  • 21 Aldridge WN. A new method for the estimation of micro quantities of cyanide and thiocyanate. Analyst 1944; 69: 262
  • 22 Nahrstedt A. Ersatz karzinogener und allergener Amine in der Cyanid-Bestimmung nach Aldridge. Dtsch Apoth Ztg 1977; 117: 1357-1359
  • 23 Brimer L, Christensen SB, Mølgaard P, Nartey F. Determination of cyanogenic compounds by thin-layer chromatography. 1. A densitometric method for quantification of cyanogenic glycosides, employing enzyme preparations (β-Glucuronidase) from Helix pomatia and picrate-impregnated ion-exchange sheets. J Agric Food Chem 1983; 31: 789-793
  • 24 Ettlinger M, Eyjólfsson R. Revision of the structure of the cyanogenic glucoside triglochinin. J Chem Soc Chem Comm 1972; 9: 572-573
  • 25 Eyjólfsson R. Isolation and structure determination of triglochinin, a new cyanogenic glucoside from Triglochin maritimum . Phytochemistry 1970; 9: 845-851
  • 26 Nahrstedt A, Hösel W, Walther A. Characterization of cyanogenic glucosides and β-glucosidases in Triglochin maritima seedlings. Phytochemistry 1979; 18: 1137-1141
  • 27 Nahrstedt A. Cyanogenese der Araceen. Phytochemistry 1975; 14: 1339-1340
  • 28 Nahrstedt A. Triglochinin in Arum maculatum . Phytochemistry 1975; 14: 1870-1871
  • 29 Nahrstedt A. Triglochinin in Araceen. Phytochemistry 1975; 14: 2627-2628
  • 30 Nahrstedt A. Qualitative und quantitative Bestimmung der Cyanglucoside Triglochinin, Taxiphyllin und Dhurrin mittels Hochdruckflüssigkeitschromatographie. J Chromatogr A 1979; 177: 157-161
  • 31 Nahrstedt A. Isolation and Structure Elucidation of Cyanogenic Glycosides. In: Vennesland B, Conn EE, Knowles CJ, Westley J, Wissing F. eds. Cyanide in Biology. London: Academic Press; 1981: 145-181
  • 32 Sharples D, Spring MS, Stoker JR. The major cyanogenic glycoside in Thalictrum aquilegifolium . Phytochemistry 1972; 11: 3069-3071
  • 33 Abu-Reidah IM, Ali-Shtayeh MS, Jamous RM, Arráez-Román D, Segura-Carretero A. Comprehensive metabolite profiling of Arum palaestinum (Araceae) leaves by using liquid chromatography–tandem mass spectrometry. Food Res Int 2015; 70: 74-86
  • 34 Jaroszewski JW, Ettlinger MG. Ring cleavage of phenols in higher plants: Biosynthesis of triglochinin. Phytochemistry 1981; 20: 819-821
  • 35 Nahrstedt A, Kant JD, Hösel W. Aspects on the biosynthesis of the cyanogenic glucoside triglochinin in Triglochin maritima . Planta Med 1984; 50: 394-397
  • 36 Nielsen JS, Moller BL. Biosynthesis of cyanogenic glucosides in Triglochin maritima and the involvement of cytochrome P450 enzymes. Arch Biochem Biophys 1999; 368: 121-130
  • 37 Nielsen JS, Møller BL. Cloning and expression of cytochrome P450 enzymes catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glucosides in Triglochin maritima . Plant Physiol 2000; 122: 1311-1321
  • 38 HighChem, Bratislava, Slovakia. mzCloud – Advanced Mass Spectral Database. HighChem, Ltd [Epub November 9, 2021]. Accessed November 9, 2021 at: https://www.mzcloud.org/DataViewer
  • 39 Reaxys Chemistry Database. Elsevier B.V. [Epub November 9, 2021]. Accessed November 9, 2021 at: https://www.reaxys.com/%23/search/advanced
  • 40 Song SJ, Nakamura N, Ma CM, Hattori M, Xu SX. Five saponins from the root bark of Aralia elata . Phytochemistry 2001; 56: 491-497
  • 41 Sun TT, Liang XL, Zhu HY, Peng XL, Guo XJ, Zhao LS. Rapid separation and identification of 31 major saponins in Shizhu ginseng by ultra-high performance liquid chromatography-electron spray ionization-MS/MS. J Ginseng Res 2016; 40: 220-228
  • 42 Kingsbury JM. Poisonous Plants of the United States and Canada. Prentice-Hall Biological Science Series. Englewood Cliffs, N. J.: Prentice-Hall; 1964
  • 43 Møller BL. Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol 2010; 13: 338-347
  • 44 Pičmanová M, Neilson EH, Motawia MS, Olsen CE, Agerbirk N, Gray CJ, Flitsch S, Meier S, Silvestro D, Jørgensen K, Sánchez-Pérez R, Møller BL, Bjarnholt N. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochem J 2015; 469: 375-389
  • 45 Miller RE, Jensen R, Woodrow IE. Frequency of cyanogenesis in tropical rainforests of far north Queensland, Australia. Ann Bot 2006; 97: 1017-1044
  • 46 European Pharmacopoeia (Ph. Eur.), 10th Edition, 4.1.1. Reagents: Anisaldehyde solution (1007301). Suppl. 10.3. Stuttgart: Deutscher Apotheker Verlag; 2021