CC BY-NC-ND 4.0 · Hamostaseologie 2022; 42(04): 248-260
DOI: 10.1055/a-1665-6232
Review Article

An Update on Laboratory Diagnostics in Haemophilia A and B

Jens Müller
1   Institute for Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
,
Wolfgang Miesbach
2   Department of Haemostaseology and Hemophilia Center, Medical Clinic 2, Institute of Transfusion Medicine, University Hospital Frankfurt, Frankfurt, Germany
,
Florian Prüller
3   Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
,
Thomas Siegemund
4   Division of Hemostaseology, Department of Medicine, University Hospital Leipzig, Leipzig, Germany
,
Ute Scholz
5   Center of Hemostasis, MVZ Labor Leipzig, Leipzig, Germany
,
Ulrich J. Sachs
6   Department of Thrombosis and Haemostasis, Giessen University Hospital, Giessen, Germany
,
Standing Commission Labor (STAEKOLA) of the Society of Thrombosis and Haemostasis Research (GTH) › Author Affiliations

Abstract

Haemophilia A (HA) and B (HB) are X-linked hereditary bleeding disorders caused by lack of activity of coagulation factors VIII (FVIII) or IX (FIX), respectively. Besides conventional products, modern replacement therapies include FVIII or FIX concentrates with an extended half-life (EHL-FVIII/FIX). Two main strategies for measuring plasma FVIII or FIX activity are applied: the one-stage clotting assay (OSCA) and the chromogenic substrate assay (CSA), both calibrated against plasma (FVIII/FIX) standards. Due to the structural modifications of EHL-FVIII/FIX, reagent-dependent assay discrepancies have been described when measuring the activity of these molecules. Assay discrepancies have also been observed in FVIII/FIX gene therapy approaches. On the other hand, nonfactor replacement by the bispecific antibody emicizumab, a FVIIIa-mimicking molecule, artificially shortens activated partial thromboplastin time–based clotting times, making standard OSCAs inapplicable for analysis of samples from patients treated with this drug. In this review, we aim to give an overview on both, the currently applied and future therapies in HA and HB with or without inhibitors and corresponding test systems suitable for accompanying diagnostics.

Zusammenfassung

Bei der Hämophilie A (HA) und B (HB) handelt es sich um X-chromosomal vererbte Blutungsstörungen, die durch einen Mangel an Aktivität der Gerinnungsfaktoren VIII (FVIII) bzw. IX (FIX) verursacht werden. Im Rahmen entsprechender Substitutionstherapien kommen heute auch FVIII- oder FIX-Konzentrate mit einer verlängerten Halbwertszeit (EHL-FVIII/FIX) zum Einsatz. Zur Bestimmung der Aktivität von FVIII- bzw. FIX werden zwei grundlegend verschiedene Testprinzipien angewandt, Einstufen-Gerinnungstests (One-Stage Clotting Assay [OSCA]) und chromogene Testverfahren (CS-Assays [CSA]), welche gegen plasmatische Faktoren kalibriert werden. Aufgrund der strukturellen Modifikationen von EHL-FVIII/FIX sind testabhängige Diskrepanzen bei der Bestimmung der Aktivität dieser Moleküle beschrieben worden. Solche Diskrepanzen wurden auch im Rahmen der FVIII-/FIX-Gentherapie beobachtet. Unter Emicizumab, einem bispezifischen, monoklonalen Antikörper zur Behandlung der HA, sind die Gerinnungszeiten der aktivierten partiellen Thromboplastinzeit (aPTT) artifiziell verkürzt. Dadurch sind etablierte, aPTT-basierte Einstufen-Gerinnungstests für die Analyze von Proben von Patienten unter Emicizumab nicht anwendbar. Mit dieser Übersichtsarbeit soll ein Überblick sowohl über die Prinzipien der derzeit angewandten und zukünftigen Therapieoptionen als auch über entsprechende Testverfahren in der HA und HB gegeben werden.



Publication History

Received: 04 August 2021

Accepted: 08 October 2021

Article published online:
01 February 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bolton-Maggs PH, Pasi KJ. Haemophilias A and B. Lancet 2003; 361 (9371) 1801-1809
  • 2 Aledort L, Mannucci PM, Schramm W, Tarantino M. Factor VIII replacement is still the standard of care in haemophilia A. Blood Transfus 2019; 17 (06) 479-486
  • 3 Chowdary P. Extended half-life recombinant products in haemophilia clinical practice - expectations, opportunities and challenges. Thromb Res 2020; 196: 609-617
  • 4 Cormier M, Batty P, Tarrant J, Lillicrap D. Advances in knowledge of inhibitor formation in severe haemophilia A. Br J Haematol 2020; 189 (01) 39-53
  • 5 Burness CB, Scott LJ. Susoctocog alfa: a review in acquired haemophilia A. Drugs 2016; 76 (07) 815-821
  • 6 Oldenburg J, Mahlangu JN, Kim B. et al. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med 2017; 377 (09) 809-818
  • 7 Mahlangu J, Oldenburg J, Paz-Priel I. et al. Emicizumab prophylaxis in patients who have hemophilia A without inhibitors. N Engl J Med 2018; 379 (09) 811-822
  • 8 Batty P, Lillicrap D. Hemophilia gene therapy: approaching the first licensed product. HemaSphere 2021; 5 (03) e540
  • 9 Peyvandi F, Oldenburg J, Friedman KD. A critical appraisal of one-stage and chromogenic assays of factor VIII activity. J Thromb Haemost 2016; 14 (02) 248-261
  • 10 Srivastava A, Santagostino E, Dougall A. et al. WFH guidelines for the management of hemophilia, 3rd edition. Haemophilia 2020; 26 (Suppl. 06) 1-158
  • 11 Peyvandi F, Kenet G, Pekrul I, Pruthi RK, Ramge P, Spannagl M. Laboratory testing in hemophilia: impact of factor and non-factor replacement therapy on coagulation assays. J Thromb Haemost 2020; 18 (06) 1242-1255
  • 12 Bowyer AE, Lowe AE, Tiefenbacher S. Laboratory issues in gene therapy and emicizumab. Haemophilia 2021; 27 (Suppl. 03) 142-147
  • 13 Hubbard AR, Hamill M, Beeharry M, Bevan SA, Heath AB. SSC Sub-Committees on Factor VIII/Factor IX and von Willebrand factor of ISTH. Value assignment of the WHO 6th International Standard for blood coagulation factor VIII and von Willebrand factor in plasma (07/316). J Thromb Haemost 2011; 9 (10) 2100-2102
  • 14 Wilmot HV, Rakowski K, Gray E. The traceability of commercial plasma calibrators to the plasma international standards for factor VIII and factor IX. Int J Lab Hematol 2020; 42 (06) 810-818
  • 15 Marlar RA, Strandberg K, Shima M, Adcock DM. Clinical utility and impact of the use of the chromogenic vs one-stage factor activity assays in haemophilia A and B. Eur J Haematol 2020; 104 (01) 3-14
  • 16 Kasper CK, Aledort L, Aronson D. et al. Proceedings: a more uniform measurement of factor VIII inhibitors. Thromb Diath Haemorrh 1975; 34 (02) 612
  • 17 Gadarowski Jr JJ, Czapek EE, Ontiveros JD, Pedraza JL. Modification of the Bethesda assay for factor VIII or IX inhibitors to improve efficiency. Acta Haematol 1988; 80 (03) 134-138
  • 18 Verbruggen B, Novakova I, Wessels H, Boezeman J, van den Berg M, Mauser-Bunschoten E. The Nijmegen modification of the Bethesda assay for factor VIII:C inhibitors: improved specificity and reliability. Thromb Haemost 1995; 73 (02) 247-251
  • 19 Boylan B, Miller CH. Effects of pre-analytical heat treatment in factor VIII (FVIII) inhibitor assays on FVIII antibody levels. Haemophilia 2018; 24 (03) 487-491
  • 20 Miller CH, Boylan B, Shapiro AD, Lentz SR, Wicklund BM. Hemophilia Inhibitor Research Study Investigators. Limit of detection and threshold for positivity of the Centers for Disease Control and Prevention assay for factor VIII inhibitors. J Thromb Haemost 2017; 15 (10) 1971-1976
  • 21 Miller CH, Rice AS, Boylan B. et al; Hemophilia Inhibitor Research Study Investigators. Characteristics of hemophilia patients with factor VIII inhibitors detected by prospective screening. Am J Hematol 2015; 90 (10) 871-876
  • 22 Rampersad AG, Boylan B, Miller CH, Shapiro A. Distinguishing lupus anticoagulants from factor VIII inhibitors in haemophilic and non-haemophilic patients. Haemophilia 2018; 24 (05) 807-814
  • 23 Oldenburg J, Pavlova A. Discrepancy between one-stage and chromogenic factor VIII activity assay results can lead to misdiagnosis of haemophilia A phenotype. Hamostaseologie 2010; 30 (04) 207-211
  • 24 Duncan EM, Rodgers SE, McRae SJ. Diagnostic testing for mild hemophilia a in patients with discrepant one-stage, two-stage, and chromogenic factor VIII:C assays. Semin Thromb Hemost 2013; 39 (03) 272-282
  • 25 Bowyer AE, Van Veen JJ, Goodeve AC, Kitchen S, Makris M. Specific and global coagulation assays in the diagnosis of discrepant mild hemophilia A. Haematologica 2013; 98 (12) 1980-1987
  • 26 Trossaert M, Lienhart A, Nougier C. et al. Diagnosis and management challenges in patients with mild haemophilia A and discrepant FVIII measurements. Haemophilia 2014; 20 (04) 550-558
  • 27 Bowyer AE, Goodeve A, Liesner R, Mumford AD, Kitchen S, Makris M. p.Tyr365Cys change in factor VIII: haemophilia A, but not as we know it. Br J Haematol 2011; 154 (05) 618-625
  • 28 Lyall H, Hill M, Westby J, Grimley C, Dolan G. Tyr346–>Cys mutation results in factor VIII:C assay discrepancy and a normal bleeding phenotype - is this mild haemophilia A?. Haemophilia 2008; 14 (01) 78-80
  • 29 Strålfors A, Mikovic D, Schmidt D. et al. Genetics and hemostatic potential in persons with mild to moderate hemophilia A with a discrepancy between one-stage and chromogenic FVIII assays. Thromb Haemost 2021; 121 (01) 27-35
  • 30 Suzuki A, Suzuki N, Kanematsu T. et al. Impact of variation in reagent combinations for one-stage clotting assay on assay discrepancy in nonsevere haemophilia A. Int J Lab Hematol 2021; 43 (01) 131-138
  • 31 Kihlberg K, Strandberg K, Rosén S, Ljung R, Astermark J. Discrepancies between the one-stage clotting assay and the chromogenic assay in haemophilia B. Haemophilia 2017; 23 (04) 620-627
  • 32 Franchini M, Mannucci PM. The history of hemophilia. Semin Thromb Hemost 2014; 40 (05) 571-576
  • 33 Dodt J, Hubbard AR, Wicks SJ. et al. Potency determination of factor VIII and factor IX for new product labelling and postinfusion testing: challenges for caregivers and regulators. Haemophilia 2015; 21 (04) 543-549
  • 34 Mikaelsson M, Oswaldsson U, Sandberg H. Influence of phospholipids on the assessment of factor VIII activity. Haemophilia 1998; 4 (04) 646-650
  • 35 Augustsson C, Norström E, Andersson NG, Zetterberg E, Astermark J, Strandberg K. Monitoring standard and extended half-life products in hemophilia: assay discrepancies for factor VIII and IX in pre- and postinfusion samples. Res Pract Thromb Haemost 2020; 4 (07) 1114-1120
  • 36 Mikaelsson M, Oswaldsson U, Jankowski MA. Measurement of factor VIII activity of B-domain deleted recombinant factor VIII. Semin Hematol 2001; 38 (2, Suppl 4): 13-23
  • 37 Pouplard C, Ternisien C, Desconclois C, Lasne D, Aillaud MF, Caron C. Discrepancies between one stage assay and chromogenic substrate assay in patients treated with recombinant or plasma-derived FVIII and usefulness of a specific standard in ReFacto AF® -treated patients. Haemophilia 2016; 22 (02) e101-e103
  • 38 Gray E, Pickering W, Hockley J. et al. Collaborative study for the establishment of replacement batches for human coagulation factor IX concentrate reference standards. Pharmeur Bio 2008; 2008 (01) 19-30
  • 39 Wilmot HV, Hogwood J, Gray E. Recombinant factor IX: discrepancies between one-stage clotting and chromogenic assays. Haemophilia 2014; 20 (06) 891-897
  • 40 Wilmot HV, Gray E. Potency estimates for recombinant factor IX in the one-stage clotting assay are influenced by more than just the choice of activated partial thromboplastin time reagent. Haemophilia 2018; 24 (05) e363-e368
  • 41 Peters RT, Toby G, Lu Q. et al. Biochemical and functional characterization of a recombinant monomeric factor VIII-Fc fusion protein. J Thromb Haemost 2013; 11 (01) 132-141
  • 42 Sommer JM, Moore N, McGuffie-Valentine B. et al. Comparative field study evaluating the activity of recombinant factor VIII Fc fusion protein in plasma samples at clinical haemostasis laboratories. Haemophilia 2014; 20 (02) 294-300
  • 43 Kitchen S, Jennings I, Makris M, Kitchen DP, Woods TAL, Walker ID. Clotting and chromogenic factor VIII assay variability in post-infusion and spiked samples containing full-length recombinant FVIII or recombinant factor VIII Fc fusion protein (rFVIIIFc). Int J Lab Hematol 2019; 41 (02) 176-183
  • 44 Owaidah TM, Alzahrani HA, Al-Numair NS, Alnosair AO, Aguilos AM, Saleh M. Assessing the performance of extended half-life coagulation factor VIII, FC fusion protein by using chromogenic and one-stage assays in Saudi hemophilia A patients. Adv Hematol 2020; 2020: 8768074
  • 45 Coyle TE, Reding MT, Lin JC, Michaels LA, Shah A, Powell J. Phase I study of BAY 94-9027, a PEGylated B-domain-deleted recombinant factor VIII with an extended half-life, in subjects with hemophilia A. J Thromb Haemost 2014; 12 (04) 488-496
  • 46 Church N, Leong L, Katterle Y. et al. Factor VIII activity of BAY 94-9027 is accurately measured with most commonly used assays: results from an international laboratory study. Haemophilia 2018; 24 (05) 823-832
  • 47 Gu JM, Ramsey P, Evans V. et al. Evaluation of the activated partial thromboplastin time assay for clinical monitoring of PEGylated recombinant factor VIII (BAY 94-9027) for haemophilia A. Haemophilia 2014; 20 (04) 593-600
  • 48 Meijer P, Marlar RA, Teare JM, Adcock D. Inter-laboratory evaluation of the recovery of Bay 94–9027 [Jivi®] with one-stage clotting and chromogenic assays. Blood 2019; 134 (Suppl. 01) 1124
  • 49 Müller J, Goldmann G, Marquardt N, Pötzsch B, Oldenburg J. Extended half-life factor VIII/factor IX products: assay discrepancies and implications for hemophilia management. Hamostaseologie 2020; 40 (S 01): S15-S20
  • 50 Schmidbauer S, Witzel R, Robbel L. et al. Physicochemical characterisation of rVIII-SingleChain, a novel recombinant single-chain factor VIII. Thromb Res 2015; 136 (02) 388-395
  • 51 Klamroth R, Simpson M, von Depka-Prondzinski M. et al. Comparative pharmacokinetics of rVIII-SingleChain and octocog alfa (Advate(®) ) in patients with severe haemophilia A. Haemophilia 2016; 22 (05) 730-738
  • 52 St Ledger K, Feussner A, Kalina U. et al. International comparative field study evaluating the assay performance of AFSTYLA in plasma samples at clinical hemostasis laboratories. J Thromb Haemost 2018; 16 (03) 555-564
  • 53 Bowyer A, Key N, Dalton D, Kitchen S, Makris M. The coagulation laboratory monitoring of Afstyla single-chain FVIII concentrate. Haemophilia 2017; 23 (05) e469-e470
  • 54 Turecek PL, Bossard MJ, Graninger M. et al. BAX 855, a PEGylated rFVIII product with prolonged half-life. Development, functional and structural characterisation. Hamostaseologie 2012; 32 (Suppl. 01) S29-S38
  • 55 Turecek PL, Romeder-Finger S, Apostol C. et al. A world-wide survey and field study in clinical haemostasis laboratories to evaluate FVIII:C activity assay variability of ADYNOVATE and OBIZUR in comparison with ADVATE. Haemophilia 2016; 22 (06) 957-965
  • 56 Bulla O, Poncet A, Alberio L. et al. Impact of a product-specific reference standard for the measurement of a PEGylated rFVIII activity: the Swiss Multicentre Field Study. Haemophilia 2017; 23 (04) e335-e339
  • 57 Gray E, Kitchen S, Bowyer A. et al. Laboratory measurement of factor replacement therapies in the treatment of congenital haemophilia: a United Kingdom Haemophilia Centre Doctors' Organisation guideline. Haemophilia 2020; 26 (01) 6-16
  • 58 Stennicke HR, Kjalke M, Karpf DM. et al. A novel B-domain O-glycoPEGylated FVIII (N8-GP) demonstrates full efficacy and prolonged effect in hemophilic mice models. Blood 2013; 121 (11) 2108-2116
  • 59 Pickering W, Hansen M, Kjalke M, Ezban M. Factor VIII chromogenic assays can be used for potency labeling and postadministration monitoring of N8-GP. J Thromb Haemost 2016; 14 (08) 1579-1587
  • 60 Hillarp A, Bowyer A, Ezban M, Persson P, Kitchen S. Measuring FVIII activity of glycopegylated recombinant factor VIII, N8-GP, with commercially available one-stage clotting and chromogenic assay kits: a two-centre study. Haemophilia 2017; 23 (03) 458-465
  • 61 Møss J, Clausen WHO, Ezban M. Measuring factor VIII activity in samples from patients treated with N8-GP (Esperoct®; turoctocog alfa pegol) during the pathfinder clinical trials programme. Haemophilia 2021; 27 (03) e389-e392
  • 62 Ezban M, Hansen M, Kjalke M. An overview of turoctocog alfa pegol (N8-GP; ESPEROCT® ) assay performance: implications for postadministration monitoring. Haemophilia 2020; 26 (01) 156-163
  • 63 Metzner HJ, Weimer T, Kronthaler U, Lang W, Schulte S. Genetic fusion to albumin improves the pharmacokinetic properties of factor IX. Thromb Haemost 2009; 102 (04) 634-644
  • 64 Santagostino E, Negrier C, Klamroth R. et al. Safety and pharmacokinetics of a novel recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in hemophilia B patients. Blood 2012; 120 (12) 2405-2411
  • 65 Kitchen S, Tiefenbacher S, Gosselin R. Factor activity assays for monitoring extended half-life FVIII and factor IX replacement therapies. Semin Thromb Hemost 2017; 43 (03) 331-337
  • 66 Horn C, Négrier C, Kalina U, Seifert W, Friedman KD. Performance of a recombinant fusion protein linking coagulation factor IX with recombinant albumin in one-stage clotting assays. J Thromb Haemost 2019; 17 (01) 138-148
  • 67 Pouplard C, Galinat H, Ternisien C. et al. French Study Group on Laboratory Management of Bleeding Disorders (BIMHO Group). Multicentre evaluation of CK Prest® for assaying plasma levels of factor IX fused with albumin (Idelvion®). Haemophilia 2019; 25 (05) e327-e330
  • 68 Bowyer A, Sampson B, Shepherd F, Jones R, Kitchen S, Makris M. The FIX C assessment of extended half-life recombinant factor IX products in clinical practice. Haemophilia 2018; 24 (Suppl. 01) 56 (Abstract P053)
  • 69 Rosén S, Bryngelhed P. FIX potency of rFIX-albumin fusion protein is underestimated by one-stage methods using silica-based APTT reagents. Haemophilia 2020; 26 (02) 340-345
  • 70 Peters RT, Low SC, Kamphaus GD. et al. Prolonged activity of factor IX as a monomeric Fc fusion protein. Blood 2010; 115 (10) 2057-2064
  • 71 Sommer JM, Buyue Y, Bardan S. et al. Comparative field study: impact of laboratory assay variability on the assessment of recombinant factor IX Fc fusion protein (rFIXFc) activity. Thromb Haemost 2014; 112 (05) 932-940
  • 72 Sommer JM, Sadeghi-Khomami A, Barnowski C, Wikén M, Willemze AJ. Real-world assay variability between laboratories in monitoring of recombinant factor IX Fc fusion protein activity in plasma samples. Int J Lab Hematol 2020; 42 (03) 350-358
  • 73 Sinegre T, Trayaud A, Tardieu M. et al. Measurements of eftrenonacog alfa by 19 different combinations reagents/instrument: a single-centre study. Haemophilia 2020; 26 (03) 543-552
  • 74 Fukutake K, Kobayashi T, Sommer JM, Hirakata T, Recombinant FIX. Recombinant FIX Fc fusion protein activity assessment with the one-stage clotting assay: a multicenter, assessor-blinded, prospective study in Japan (J-Field Study). Int J Lab Hematol 2020; 42 (02) 162-169
  • 75 Østergaard H, Bjelke JR, Hansen L. et al. Prolonged half-life and preserved enzymatic properties of factor IX selectively PEGylated on native N-glycans in the activation peptide. Blood 2011; 118 (08) 2333-2341
  • 76 Young G, Ezban M, Clausen WHO, Negrier C, Oldenburg J, Shima M. Chromogenic analysis of FIX activity in haemophilia B patients treated with nonacog beta pegol. Haemophilia 2017; 23 (06) e528-e530
  • 77 Bowyer AE, Hillarp A, Ezban M, Persson P, Kitchen S. Measuring factor IX activity of nonacog beta pegol with commercially available one-stage clotting and chromogenic assay kits: a two-center study. J Thromb Haemost 2016; 14 (07) 1428-1435
  • 78 Rosén P, Rosén S, Ezban M, Persson E. Overestimation of N-glycoPEGylated factor IX activity in a one-stage factor IX clotting assay owing to silica-mediated premature conversion to activated factor IX. J Thromb Haemost 2016; 14 (07) 1420-1427
  • 79 Tiefenbacher S, Bohra R, Amiral J. et al. Qualification of a select one-stage activated partial thromboplastin time-based clotting assay and two chromogenic assays for the post-administration monitoring of nonacog beta pegol. J Thromb Haemost 2017; 15 (10) 1901-1912
  • 80 Ezban M, Hermit MB, Persson E. FIXing postinfusion monitoring: assay experiences with N9-GP (nonacog beta pegol; Refixia®; Rebinyn®). Haemophilia 2019; 25 (01) 154-161
  • 81 Sampei Z, Igawa T, Soeda T. et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One 2013; 8 (02) e57479
  • 82 Kitazawa T, Igawa T, Sampei Z. et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med 2012; 18 (10) 1570-1574
  • 83 Lenting PJ, Denis CV, Christophe OD. Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: how does it actually compare to factor VIII?. Blood 2017; 130 (23) 2463-2468
  • 84 Adamkewicz JI, Chen DC, Paz-Priel I. Effects and interferences of emicizumab, a humanised bispecific antibody mimicking activated factor VIII cofactor function, on coagulation assays. Thromb Haemost 2019; 119 (07) 1084-1093
  • 85 Müller J, Pekrul I, Pötzsch B, Berning B, Oldenburg J, Spannagl M. Laboratory monitoring in emicizumab-treated persons with hemophilia A. Thromb Haemost 2019; 119 (09) 1384-1393
  • 86 Amiral J, Seghatchian J. Usefulness of chromogenic assays for potency assignment and recovery of plasma-derived FVIII and FIX concentrates or their recombinant long acting therapeutic equivalents with potential application in treated pediatric hemophiliac patients. Transfus Apheresis Sci 2018; 57 (03) 363-369
  • 87 Santoro C, Quintavalle G, Castaman G. et al. Inhibitors in hemophilia B. Semin Thromb Hemost 2018; 44 (06) 578-589
  • 88 Lusher JM. Inhibitor antibodies to factor VIII and factor IX: management. Semin Thromb Hemost 2000; 26 (02) 179-188
  • 89 Holstein K, Albisetti M, Bidlingmaier C. et al. ‘Ständige Kommission Hämophilie’ (Haemophilia board) of the German, Swiss Austrian Society for Thrombosis Haemostasis Research (GTH). Practical guidance of the GTH Haemophilia Board on the use of emicizumab in patients with haemophilia A. Hamostaseologie 2020; 40 (05) 561-571
  • 90 Warrier I, Ewenstein BM, Koerper MA. et al. Factor IX inhibitors and anaphylaxis in hemophilia B. J Pediatr Hematol Oncol 1997; 19 (01) 23-27
  • 91 Abdi A, Bordbar MR, Hassan S. et al. Prevalence and incidence of non-neutralizing antibodies in congenital hemophilia A - a systematic review and meta-analysis. Front Immunol 2020; 11: 563
  • 92 Miller CH, Boylan B, Payne AB, Driggers J, Bean CJ. Validation of the chromogenic Bethesda assay for factor VIII inhibitors in hemophilia a patients receiving Emicizumab. Int J Lab Hematol 2021; 43 (02) e84-e86
  • 93 Konkle BA, Stasyshyn O, Chowdary P. et al. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood 2015; 126 (09) 1078-1085
  • 94 Mullins ES, Stasyshyn O, Alvarez-Román MT. et al. Extended half-life pegylated, full-length recombinant factor VIII for prophylaxis in children with severe haemophilia A. Haemophilia 2017; 23 (02) 238-246
  • 95 Meunier S, Alamelu J, Ehrenforth S. et al. Safety and efficacy of a glycoPEGylated rFVIII (turoctocog alpha pegol, N8-GP) in paediatric patients with severe haemophilia A. Thromb Haemost 2017; 117 (09) 1705-1713
  • 96 Santagostino E, Kenet G, Fischer K, Biss T, Ahuja S, Steele M. PROTECT VIII Kids: BAY 94-9027 (PEGylated Recombinant Factor VIII) safety and efficacy in previously treated children with severe haemophilia A. Haemophilia 2020; 26 (03) e55-e65
  • 97 Lieuw K. Many factor VIII products available in the treatment of hemophilia A: an embarrassment of riches?. J Blood Med 2017; 8: 67-73
  • 98 Schiavoni M, Napolitano M, Giuffrida G. et al. Status of recombinant factor VIII concentrate treatment for hemophilia A in Italy: characteristics and clinical benefits. Front Med (Lausanne) 2019; 6: 261
  • 99 Fylling KA, Tange JI, Chen D, Pruthi RK. Heat inactivation of extended half-life factor VIII concentrates. Haemophilia 2019; 25 (02) e130-e131
  • 100 Payne AB, Ellingsen D, Driggers J, Bean CJ, Miller CH. Evaluation of pre-analytic heat treatment protocol used in the CDC Nijmegen-Bethesda assay for heat inactivation of extended half-life haemophilia treatment products. Haemophilia 2020; 26 (01) e28-e30
  • 101 Türkantoz H, Königs C, Knöbl P. et al. Cross-reacting inhibitors against recombinant porcine factor VIII in acquired hemophilia A: data from the GTH-AH 01/2010 study. J Thromb Haemost 2020; 18 (01) 36-43
  • 102 Mancuso ME, Mahlangu JN, Pipe SW. The changing treatment landscape in haemophilia: from standard half-life clotting factor concentrates to gene editing. Lancet 2021; 397 (10274): 630-640
  • 103 Croteau SE, Wang M, Wheeler AP. 2021 clinical trials update: innovations in hemophilia therapy. Am J Hematol 2021; 96 (01) 128-144
  • 104 Miesbach W, Eladly F. Current and future options of haemophilia A treatments. Expert Opin Biol Ther 2021; 21 (11) 1395-1402
  • 105 Trinchero A, Sholzberg M, Matino D. The evolution of hemophilia care: clinical and laboratory advances, opportunities, and challenges. Hamostaseologie 2020; 40 (03) 311-321
  • 106 Tripodi A, Chantarangkul V, Novembrino C, Peyvandi F. Advances in the treatment of hemophilia: implications for laboratory testing. Clin Chem 2019; 65 (02) 254-262
  • 107 Rangarajan S, Walsh L, Lester W. et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med 2017; 377 (26) 2519-2530
  • 108 Robinson MM, George LA, Carr ME. et al. Factor IX assay discrepancies in the setting of liver gene therapy using a hyperfunctional variant factor IX-Padua. J Thromb Haemost 2021; 19 (05) 1212-1218