Hamostaseologie 2021; 41(06): 428-432
DOI: 10.1055/a-1661-0257
Review Article

Thromboinflammation as a Driver of Venous Thromboembolism

Nadine Gauchel
1   Department of Cardiology and Angiology I, University Heart Center Freiburg—Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
,
Krystin Krauel
1   Department of Cardiology and Angiology I, University Heart Center Freiburg—Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
,
Muataz Ali Hamad
1   Department of Cardiology and Angiology I, University Heart Center Freiburg—Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
,
Christoph Bode
1   Department of Cardiology and Angiology I, University Heart Center Freiburg—Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
,
Daniel Duerschmied
1   Department of Cardiology and Angiology I, University Heart Center Freiburg—Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
› Author Affiliations
Funding Deutsche Forschungsgemeinschaft, #422681845

Abstract

Thrombus formation has been identified as an integral part in innate immunity, termed immunothrombosis. Activation of host defense systems is known to result in a procoagulant environment. In this system, cellular players as well as soluble mediators interact with each other and their dysregulation can lead to the pathological process of thromboinflammation. These mechanisms have been under intensified investigation during the COVID-19 pandemic. In this review, we focus on the underlying mechanisms leading to thromboinflammation as one trigger of venous thromboembolism.

Zusammenfassung

Die Thrombusbildung wurde als integraler Bestandteil der angeborenen Immunität identifiziert und als Immunthrombose bezeichnet. Es ist bekannt, dass die Aktivierung von Wirtsabwehrsystemen zu einer pro-thrombotischen Umgebung führt. In diesem System interagieren sowohl zelluläre Bestandteile als auch lösliche Faktoren miteinander, die bei einer Dysregulation den pathologischen Prozess der Thromboinflammation induzieren können. Diese Mechanismen wurden während der COVID-19-Pandemie verstärkt untersucht. In dieser Übersichtsarbeit konzentrieren wir uns auf die zugrunde liegenden Mechanismen, die zur Thromboinflammation führen als ein Auslöser der venösen Thromboembolien.



Publication History

Received: 30 June 2021

Accepted: 04 October 2021

Article published online:
23 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Raskob GE, Angchaisuksiri P, Blanco AN. et al; ISTH Steering Committee for World Thrombosis Day. Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vasc Biol 2014; 34 (11) 2363-2371
  • 2 Stark K, Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 2021; 18 (09) 666-682
  • 3 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 4 Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care 2017; 7 (01) 117
  • 5 Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133 (09) 906-918
  • 6 von Brühl M-L, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 7 van der Poll T, de Boer JD, Levi M. The effect of inflammation on coagulation and vice versa. Curr Opin Infect Dis 2011; 24 (03) 273-278
  • 8 Gresele P, Momi S, Migliacci R. Endothelium, venous thromboembolism and ischaemic cardiovascular events. Thromb Haemost 2010; 103 (01) 56-61
  • 9 Obi AT, Andraska E, Kanthi Y. et al. Endotoxaemia-augmented murine venous thrombosis is dependent on TLR-4 and ICAM-1, and potentiated by neutropenia. Thromb Haemost 2017; 117 (02) 339-348
  • 10 Hippenstiel S, Suttorp N. Interaction of pathogens with the endothelium. Thromb Haemost 2003; 89 (01) 18-24
  • 11 Ten VS, Pinsky DJ. Endothelial response to hypoxia: physiologic adaptation and pathologic dysfunction. Curr Opin Crit Care 2002; 8 (03) 242-250
  • 12 Mojiri A, Nakhaii-Nejad M, Phan W-L. et al. Hypoxia results in upregulation and de novo activation of von Willebrand factor expression in lung endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33 (06) 1329-1338
  • 13 Ponomaryov T, Payne H, Fabritz L, Wagner DD, Brill A. Mast cells granular contents are crucial for deep vein thrombosis in mice. Circ Res 2017; 121 (08) 941-950
  • 14 Brill A, Fuchs TA, Chauhan AK. et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011; 117 (04) 1400-1407
  • 15 Michels A, Dwyer CN, Mewburn J. et al. von Willebrand factor is a critical mediator of deep vein thrombosis in a mouse model of diet-induced obesity. Arterioscler Thromb Vasc Biol 2020; 40 (12) 2860-2874
  • 16 Guo L, Rondina MT. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front Immunol 2019; 10: 2204
  • 17 Becattini C, Agnelli G, Schenone A. et al; WARFASA Investigators. Aspirin for preventing the recurrence of venous thromboembolism. N Engl J Med 2012; 366 (21) 1959-1967
  • 18 Brighton TA, Eikelboom JW, Mann K. et al; ASPIRE Investigators. Low-dose aspirin for preventing recurrent venous thromboembolism. N Engl J Med 2012; 367 (21) 1979-1987
  • 19 Stewart GJ. Neutrophils and deep venous thrombosis. Haemostasis 1993; 23 (Suppl. 01) 127-140
  • 20 Subramaniam S, Jurk K, Hobohm L. et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 2017; 129 (16) 2291-2302
  • 21 Hisada Y, Ay C, Auriemma AC, Cooley BC, Mackman N. Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size. J Thromb Haemost 2017; 15 (11) 2208-2217
  • 22 Fuchs TA, Brill A, Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 23 Elaskalani O, Abdol Razak NB, Metharom P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun Signal 2018; 16 (01) 24
  • 24 Laridan E, Martinod K, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost 2019; 45 (01) 86-93
  • 25 Brill A, Fuchs TA, Savchenko AS. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 26 Sorvillo N, Cherpokova D, Martinod K, Wagner DD. Extracellular DNA NET-works with dire consequences for health. Circ Res 2019; 125 (04) 470-488
  • 27 Carestia A, Kaufman T, Schattner M. Platelets: new bricks in the building of neutrophil extracellular traps. Front Immunol 2016; 7: 271
  • 28 Martinod K, Demers M, Fuchs TA. et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 2013; 110 (21) 8674-8679
  • 29 Verschoor A, Langer HF. Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost 2013; 110 (05) 910-919
  • 30 Schmidt CQ, Verschoor A. Complement and coagulation: so close, yet so far. Blood 2017; 130 (24) 2581-2582
  • 31 Fletcher-Sandersjöö A, Bellander B-M. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thromb Res 2020; 194: 36-41
  • 32 de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol 2019; 16 (01) 19-27
  • 33 Foley JH, Walton BL, Aleman MM. et al. Complement activation in arterial and venous thrombosis is mediated by plasmin. EBioMedicine 2016; 5: 175-182
  • 34 Nørgaard I, Nielsen SF, Nordestgaard BG. Complement C3 and high risk of venous thromboembolism: 80517 individuals from the Copenhagen General Population Study. Clin Chem 2016; 62 (03) 525-534
  • 35 Borish LC, Steinke JW. 2. Cytokines and chemokines. J Allergy Clin Immunol 2003; 111 (2, Suppl): S460-S475
  • 36 Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol 2020; 108 (01) 17-41
  • 37 Du F, Liu B, Zhang S. COVID-19: the role of excessive cytokine release and potential ACE2 down-regulation in promoting hypercoagulable state associated with severe illness. J Thromb Thrombolysis 2020; 51 (02) 313-329
  • 38 Bikdeli B, Madhavan MV, Jimenez D. et al; Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75 (23) 2950-2973
  • 39 Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax 2021; 76 (04) 412-420
  • 40 Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395 (10229): 1033-1034
  • 41 Qin C, Zhou L, Hu Z. et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis 2020; 71 (15) 762-768
  • 42 Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb Res 2020; 194: 101-115
  • 43 Levi M, van der Poll T, Büller HR. Bidirectional relation between inflammation and coagulation. Circulation 2004; 109 (22) 2698-2704
  • 44 Ranucci M, Ballotta A, Di Dedda U. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020; 18 (07) 1747-1751
  • 45 Magro C, Mulvey JJ, Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 2020; 220: 1-13
  • 46 Carvelli J, Demaria O, Vély F. et al; Explore COVID-19 IPH group, Explore COVID-19 Marseille Immunopole group. Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature 2020; 588 (7836): 146-150
  • 47 Leisman DE, Deutschman CS, Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med 2020; 46 (06) 1105-1108
  • 48 Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J 2020; 41 (32) 3038-3044
  • 49 Janiuk K, Jabłońska E, Garley M. Significance of NETs formation in COVID-19. Cells 2021; 10 (01) 151
  • 50 Middleton EA, He X-Y, Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020; 136 (10) 1169-1179
  • 51 Leppkes M, Knopf J, Naschberger E. et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine 2020; 58: 102925
  • 52 Nicolai L, Leunig A, Brambs S. et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation 2020; 142 (12) 1176-1189
  • 53 Krauel K, Duerschmied D. ICODE: the international COVID-19 thrombosis biomarkers colloquium-novel soluble biomarkers: circulating cell-free nucleic acids and other molecules. J Thromb Thrombolysis 2021 May 12:1–5. doi: 10.1007/s11239-021-02468-6. Epub ahead of print.
  • 54 Zuo Y, Zuo M, Yalavarthi S. et al. Neutrophil extracellular traps and thrombosis in COVID-19. J Thromb Thrombolysis 2021; 51 (02) 446-453
  • 55 Petito E, Falcinelli E, Paliani U. et al; COVIR study investigators. Association of neutrophil activation, more than platelet activation, with thrombotic complications in coronavirus disease 2019. J Infect Dis 2021; 223 (06) 933-944
  • 56 Skendros P, Mitsios A, Chrysanthopoulou A. et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest 2020; 130 (11) 6151-6157
  • 57 Hasan Ali O, Bomze D, Risch L. et al. Severe COVID-19 is associated with elevated serum IgA and antiphospholipid IgA-antibodies. Clin Infect Dis 2020; ciaa1496: ciaa1496
  • 58 Xiao M, Zhang Y, Zhang S. et al. Antiphospholipid antibodies in critically ill patients with COVID-19. Arthritis Rheumatol 2020; 72 (12) 1998-2004
  • 59 Borghi MO, Beltagy A, Garrafa E. et al. Anti-phospholipid antibodies in COVID-19 are different from those detectable in the anti-phospholipid syndrome. Front Immunol 2020; 11: 584241
  • 60 Gkrouzman E, Barbhaiya M, Erkan D, Lockshin MD. Reality check on antiphospholipid antibodies in COVID-19-associated coagulopathy. Arthritis Rheumatol 2021; 73 (01) 173-174
  • 61 Violi F, Cammisotto V, Pignatelli P. Thrombosis in Covid-19 and non-Covid-19 pneumonia: role of platelets. Platelets 2021 Jun 7:1-9. doi: 10.1080/09537104.2021.1936478. Epub ahead of print.
  • 62 Bonaventura A, Vecchié A, Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21 (05) 319-329