Hamostaseologie 2021; 41(06): 433-442
DOI: 10.1055/a-1661-0020
Review Article

Anti-inflammatory Strategies in Atherosclerosis

Heiko Bugger
1   Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
,
Andreas Zirlik
1   Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
› Institutsangaben

Abstract

Atherosclerotic vascular disease and its related complications are the major cause of mortality in Western societies. Atherosclerosis is a chronic inflammatory disease of the arterial wall triggered by traditional and nontraditional risk factors and mediated by inflammatory and immune responses. Recent clinical trials provided compelling evidence corroborating that atherosclerosis is an inflammatory disease and demonstrated efficacy of anti-inflammatory interventions in reducing cardiovascular events and mortality. Traditional risk factors drive vascular inflammation, further justifying the instrumental role of intensified risk factor management in attenuating and preventing atherosclerotic disease and complications. Promising therapeutic approaches specifically related to inhibition of inflammation span traditional anti-inflammatory drugs, specific immunomodulation, and development of vaccination against atherosclerotic disease. Here, we review the inflammatory component in atherogenesis, the available evidence from clinical trials evaluating efficacy of therapeutic anti-inflammatory interventions in patients with high cardiovascular risk, and discuss potential future targets for anti-inflammatory or immune modulatory treatment in atherosclerotic cardiovascular disease.

Author Contributions

All authors contributed equally to this manuscript.




Publikationsverlauf

Eingereicht: 24. September 2021

Angenommen: 28. September 2021

Artikel online veröffentlicht:
23. Dezember 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32 (09) 2045-2051
  • 2 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473 (7347): 317-325
  • 3 Libby P, Hansson GK. Taming immune and inflammatory responses to treat atherosclerosis. J Am Coll Cardiol 2018; 71 (02) 173-176
  • 4 Libby P. Inflammation in atherosclerosis-no longer a theory. Clin Chem 2021; 67 (01) 131-142
  • 5 Libby P. The changing landscape of atherosclerosis. Nature 2021; 592 (7855): 524-533
  • 6 Wolf D, Stachon P, Bode C, Zirlik A. Inflammatory mechanisms in atherosclerosis. Hamostaseologie 2014; 34 (01) 63-71
  • 7 Zirlik A, Lutgens E. An inflammatory link in atherosclerosis and obesity. Co-stimulatory molecules. Hamostaseologie 2015; 35 (03) 272-278
  • 8 Marchini T, Zirlik A, Wolf D. Pathogenic role of air pollution particulate matter in cardiometabolic disease: evidence from mice and humans. Antioxid Redox Signal 2020; 33 (04) 263-279
  • 9 Jaiswal S, Natarajan P, Silver AJ. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017; 377 (02) 111-121
  • 10 Fernandez DM, Rahman AH, Fernandez NF. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med 2019; 25 (10) 1576-1588
  • 11 Winkels H, Ehinger E, Vassallo M. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res 2018; 122 (12) 1675-1688
  • 12 Lutgens E, van Suylen RJ, Faber BC. et al. Atherosclerotic plaque rupture: local or systemic process?. Arterioscler Thromb Vasc Biol 2003; 23 (12) 2123-2130
  • 13 Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med 2015; 278 (05) 483-493
  • 14 Wolf D, Zirlik A, Ley K. Beyond vascular inflammation–recent advances in understanding atherosclerosis. Cell Mol Life Sci 2015; 72 (20) 3853-3869
  • 15 Wolf D, Gerhardt T, Winkels H. et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD4+ T-regulatory cells. Circulation 2020; 142 (13) 1279-1293
  • 16 Fahed AC, Jang IK. Plaque erosion and acute coronary syndromes: phenotype, molecular characteristics and future directions. Nat Rev Cardiol 2021; 18 (10) 724-734
  • 17 Leistner DM, Kränkel N, Meteva D. et al. Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO-ACS study. Eur Heart J 2020; 41 (37) 3549-3560
  • 18 Libby P. Targeting inflammatory pathways in cardiovascular disease: the inflammasome, interleukin-1, interleukin-6 and beyond. Cells 2021; 10 (04) 951
  • 19 Kirii H, Niwa T, Yamada Y. et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2003; 23 (04) 656-660
  • 20 Vromman A, Ruvkun V, Shvartz E. et al. Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. Eur Heart J 2019; 40 (30) 2482-2491
  • 21 Stachon P, Heidenreich A, Merz J. et al. P2X7 deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation 2017; 135 (25) 2524-2533
  • 22 Michel NA, Zirlik A, Wolf D. CD40L and its receptors in atherothrombosis-an update. Front Cardiovasc Med 2017; 4: 40
  • 23 Wolf D, Hohmann JD, Wiedemann A. et al. Binding of CD40L to Mac-1's I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis–but does not affect immunity and thrombosis in mice. Circ Res 2011; 109 (11) 1269-1279
  • 24 Wolf D, Anto-Michel N, Blankenbach H. et al. A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense. Nat Commun 2018; 9 (01) 525
  • 25 Gissler MC, Scherrer P, Anto-Michel N. et al. Deficiency of endothelial CD40 induces a stable plaque phenotype and limits inflammatory cell recruitment to atherosclerotic lesions in mice. Thromb Haemost 2021; 121 (11) 1530-1540
  • 26 Seijkens TTP, van Tiel CM, Kusters PJH. et al. Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis. J Am Coll Cardiol 2018; 71 (05) 527-542
  • 27 Lacy M, Bürger C, Shami A. et al. Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun 2021; 12 (01) 3754
  • 28 Anto Michel N, Colberg C, Buscher K. et al. Inflammatory pathways regulated by tumor necrosis receptor-associated factor 1 protect from metabolic consequences in diet-induced obesity. Circ Res 2018; 122 (05) 693-700
  • 29 Missiou A, Rudolf P, Stachon P. et al. TRAF5 deficiency accelerates atherogenesis in mice by increasing inflammatory cell recruitment and foam cell formation. Circ Res 2010; 107 (06) 757-766
  • 30 Lameijer M, Binderup T, van Leent MMT. et al. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat Biomed Eng 2018; 2 (05) 279-292
  • 31 Hollan I, Meroni PL, Ahearn JM. et al. Cardiovascular disease in autoimmune rheumatic diseases. Autoimmun Rev 2013; 12 (10) 1004-1015
  • 32 Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ. CANTOS Trial Group. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 2018; 391 (10118): 319-328
  • 33 Ridker PM, Danielson E, Fonseca FA. et al; JUPITER Trial Study Group. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 2009; 373 (9670): 1175-1182
  • 34 Ridker PM, Cannon CP, Morrow D. et al; Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) Investigators. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005; 352 (01) 20-28
  • 35 Bohula EA, Giugliano RP, Leiter LA. et al. Inflammatory and cholesterol risk in the FOURIER trial. Circulation 2018; 138 (02) 131-140
  • 36 Peikert A, Kaier K, Merz J. et al. Residual inflammatory risk in coronary heart disease: incidence of elevated high-sensitive CRP in a real-world cohort. Clin Res Cardiol 2020; 109 (03) 315-323
  • 37 Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. CANTOS Trial Group. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 2017; 390 (10105): 1833-1842
  • 38 Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 2013; 61 (04) 404-410
  • 39 Imazio M, Nidorf M. Colchicine and the heart. Eur Heart J 2021; 42 (28) 2745-2760
  • 40 Nidorf SM, Fiolet ATL, Mosterd A. et al; LoDoCo2 Trial Investigators. Colchicine in patients with chronic coronary disease. N Engl J Med 2020; 383 (19) 1838-1847
  • 41 Tardif JC, Kouz S, Waters DD. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 2019; 381 (26) 2497-2505
  • 42 Westlake SL, Colebatch AN, Baird J. et al. The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: a systematic literature review. Rheumatology (Oxford) 2010; 49 (02) 295-307
  • 43 Ridker PM, Everett BM, Pradhan A. et al; CIRT Investigators. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med 2019; 380 (08) 752-762
  • 44 Giugliano GR, Giugliano RP, Gibson CM, Kuntz RE. Meta-analysis of corticosteroid treatment in acute myocardial infarction. Am J Cardiol 2003; 91 (09) 1055-1059
  • 45 Hafström I, Rohani M, Deneberg S, Wörnert M, Jogestrand T, Frostegård J. Effects of low-dose prednisolone on endothelial function, atherosclerosis, and traditional risk factors for atherosclerosis in patients with rheumatoid arthritis–a randomized study. J Rheumatol 2007; 34 (09) 1810-1816
  • 46 Ribichini F, Tomai F, De Luca G. et al; CEREA-DES investigators. Immunosuppressive therapy with oral prednisone to prevent restenosis after PCI. A multicenter randomized trial. Am J Med 2011; 124 (05) 434-443
  • 47 Olsen AM, Fosbøl EL, Lindhardsen J. et al. Long-term cardiovascular risk of nonsteroidal anti-inflammatory drug use according to time passed after first-time myocardial infarction: a nationwide cohort study. Circulation 2012; 126 (16) 1955-1963
  • 48 Brånén L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004; 24 (11) 2137-2142
  • 49 Tuleta I, França CN, Wenzel D. et al. Hypoxia-induced endothelial dysfunction in apolipoprotein E-deficient mice; effects of infliximab and L-glutathione. Atherosclerosis 2014; 236 (02) 400-410
  • 50 Oberoi R, Vlacil AK, Schuett J. et al. Anti-tumor necrosis factor-α therapy increases plaque burden in a mouse model of experimental atherosclerosis. Atherosclerosis 2018; 277: 80-89
  • 51 Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res 2015; 116 (07) 1254-1268
  • 52 Ridker PM, Devalaraja M, Baeres FMM. et al; RESCUE Investigators. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2021; 397 (10289): 2060-2069
  • 53 Broch K, Anstensrud AK, Woxholt S. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J Am Coll Cardiol 2021; 77 (15) 1845-1855
  • 54 Coll RC, Robertson AA, Chae JJ. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 2015; 21 (03) 248-255
  • 55 van Hout GP, Bosch L, Ellenbroek GH. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 2017; 38 (11) 828-836
  • 56 Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol 2019; 10: 2538
  • 57 Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986; 6 (02) 131-138
  • 58 Kimura T, Kobiyama K, Winkels H. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 2018; 138 (11) 1130-1143
  • 59 Kimura T, Tse K, Sette A, Ley K. Vaccination to modulate atherosclerosis. Autoimmunity 2015; 48 (03) 152-160
  • 60 Campbell LA, Rosenfeld ME. Infection and atherosclerosis development. Arch Med Res 2015; 46 (05) 339-350
  • 61 Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res 2019; 124 (02) 315-327
  • 62 Paulsson G, Zhou X, Törnquist E, Hansson GK. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20 (01) 10-17
  • 63 Koltsova EK, Garcia Z, Chodaczek G. et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J Clin Invest 2012; 122 (09) 3114-3126
  • 64 Kobiyama K, Saigusa R, Ley K. Vaccination against atherosclerosis. Curr Opin Immunol 2019; 59: 15-24
  • 65 Pinderski Oslund LJ, Hedrick CC, Olvera T. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 1999; 19 (12) 2847-2853
  • 66 Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 2003; 112 (09) 1342-1350
  • 67 Foks AC, Lichtman AH, Kuiper J. Treating atherosclerosis with regulatory T cells. Arterioscler Thromb Vasc Biol 2015; 35 (02) 280-287
  • 68 Gisterå A, Hermansson A, Strodthoff D. et al. Vaccination against T-cell epitopes of native ApoB100 reduces vascular inflammation and disease in a humanized mouse model of atherosclerosis. J Intern Med 2017; 281 (04) 383-397
  • 69 Zinman B, Wanner C, Lachin JM. et al; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373 (22) 2117-2128
  • 70 Wiviott SD, Raz I, Bonaca MP. et al; DECLARE–TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380 (04) 347-357
  • 71 Marso SP, Daniels GH, Brown-Frandsen K. et al; LEADER Steering Committee, LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375 (04) 311-322
  • 72 Liu L, Ni YQ, Zhan JK, Liu YS. The role of SGLT2 inhibitors in vascular aging. Aging Dis 2021; 12 (05) 1323-1336
  • 73 Ma X, Liu Z, Ilyas I. et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci 2021; 17 (08) 2050-2068
  • 74 Heerspink HJL, Stefánsson BV, Correa-Rotter R. et al; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med 2020; 383 (15) 1436-1446
  • 75 Williams B, Mancia G, Spiering W. et al; ESC Scientific Document Group. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J 2018; 39 (33) 3021-3104
  • 76 Sabatine MS, Giugliano RP, Keech AC. et al; FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017; 376 (18) 1713-1722
  • 77 Robinson JG, Farnier M, Krempf M. et al; ODYSSEY LONG TERM Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med 2015; 372 (16) 1489-1499
  • 78 Ridker PM, Everett BM, Thuren T. et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131
  • 79 Ference BA, Bhatt DL, Catapano AL. et al. Association of genetic variants related to combined exposure to lower low-density lipoproteins and lower systolic blood pressure with lifetime risk of cardiovascular disease. JAMA 2019; 322 (14) 1381-1391