Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49(06): 392-402
DOI: 10.1055/a-1656-2610
Originalartikel

Effekte einer oralen Mangansupplementierung mit unterschiedlichen Verbindungen auf die Mangankonzentrationen in Vollblut und Serum von Stuten und Saugfohlen

Effects of oral manganese supplementation with different compounds on the manganese whole blood and serum concentrations of broodmares and their suckling foals
Elena Theiner
1   Institut für Tierernährung, Ernährungsschäden und Diätetik, Universität Leipzig
,
Corinna Weber
2   LABOKLIN GMBH & CO. KG, Bad Kissingen
,
Elisabeth Müller
2   LABOKLIN GMBH & CO. KG, Bad Kissingen
,
Monica Venner
3   Pferdeklinik Destedt GmbH, Destedt
,
Christa Finkler-Schade
4   Schade & Partner Fachberatung für Pferdebetriebe, Verden
,
Ingrid Vervuert
1   Institut für Tierernährung, Ernährungsschäden und Diätetik, Universität Leipzig
› Author Affiliations

Zusammenfassung

Ziel Überprüfung von Effekten einer oralen Ergänzung von Mangan (Mn) auf die Mn-Konzentration im Blut laktierender Warmblutstuten und die Untersuchung der Beziehung zwischen der Mn-Versorgung der Mutterstuten und ihrer Saugfohlen.

Material und Methoden Für die 90-tägige Fütterungssphase wurden laktierende Stuten in 3 Gruppen eingeteilt und erhielten täglich ein Placebo (n = 11) oder eine Mn-Zulage von 560 mg Mn als Mn-Sulfat (n = 11) oder Mn-Chelat (n = 11) zusätzlich zur Mn-Aufnahme aus der Grundration (Heu ad libitum, Totale Mischration: Mn-Aufnahme ~100 mg/kg Trockenmasse). In 14-tägigen Abständen wurden Blutproben von den Stuten und Fohlen entnommen. Die Mn-Bestimmung im Serum und Vollblut sowie in der Stutenmilch erfolgte mittels Massenspektrometrie mit induktiv gekoppeltem Plasma, die Mn-Analyse in repräsentativen Futterproben mittels Atomabsorptionsspektrometrie. Zur Datenauswertung diente die Software IBM SPSS Statistics 27 (IBM Deutschland GmbH, Ehningen).

Ergebnisse Während der Supplementierung zeigten die Stuten im Vollblut (Median: 15,6 µg/l; 25.–75. Perzentil: 12,8–18,5 µg/l) 10-fach höhere Mn-Konzentrationen als im Serum (Median: 1,54 µg/l; 25.–75. Perzentil: 1,20–1,90 µg/l). Die Fohlen wiesen 16,4-fach höhere Mn-Konzentrationen im Vollblut (Median: 21,3 µg/l; 25.–75. Perzentil: 16,7–28,1 µg/l) im Vergleich zum Serum (Median: 1,50 µg/l; 25.–75. Perzentil: 1,30–1,70 µg/l) auf. Die Mn-Vollblutspiegel der Fohlen entsprachen der 1,6-fachen Mn-Konzentration ihrer Mutterstuten. Die Milch enthielt eine mediane Mn-Konzentration von 0,012 mg/kg Frischmasse. Die Mn-Supplementierung hatte keinen Effekt auf die Mn-Spiegel im Blut von Stuten und ihren Fohlen.

Schlussfolgerung und klinische Relevanz Die Mn-Supplementierung beeinflusste die Mn-Konzentrationen im Blut nicht, es unterschieden sich aber die Mn-Gehalte zwischen Serum und Vollblut. Ferner lagen die Mn-Spiegel im Vollblut der Fohlen höher als die der Stuten, obwohl die Mn-Konzentrationen – unabhängig von der Supplementierung – in der Stutenmilch niedrig waren. Aufgrund des geringen Mn-Gehalts der Milch ist eine Mn-Zufuhr, vorzugsweise über das Raufutter, notwendig, um die Mn-Versorgung der Fohlen sicherzustellen.

Abstract

Objective This study aimed to examine the effects of an oral supplementation on manganese (Mn) concentrations in the blood of lactating warm-blood broodmares. Furthermore, the potential relationship between Mn supply of the lactating mare and its suckling foal was investigated.

Material and methods During the 90-day trial, lactating mares were divided into 3 groups and daily received a daily dose of either a placebo (n = 11) or a Mn supplement of 560 mg Mn as Mn sulfate (n = 11) or Mn chelate (n = 11) in addition to the Mn intake from the basal ration (hay ad libitum, total mixed ration: Mn intake ~ 100 mg/kg dry matter). Blood samples were taken from the mares and their foals in 14-day intervals. The Mn determination in serum and whole blood as well as in the mare’s milk was carried out by means of mass spectrometry with inductively coupled plasma. The Mn analysis in representative feed samples was performed by means of atomic absorption spectrometry. Data were assessed using the software IBM SPSS Statistics 27 (IBM Deutschland GmbH, Ehningen).

Results During the trial period, the mares showed Mn concentrations 10-fold higher in whole blood (median: 15.6 µg/l; 25–75 percentile: 12.8–18.5 µg/l) than in serum (median: 1.54 µg/l; 25–75 percentile: 1.20–1.90 µg/l). The foals had Mn whole-blood concentrations 16.4-fold higher (median: 21.3 µg/l; 25–75 percentile: 16.7–28.1 µg/l) compared to their serum (median: 1.50 µg/l; 25–75 percentile: 1.30–1.70 µg/l). The Mn whole-blood levels of the foals corresponded to 1.6-fold the Mn concentration of their dams. The milk contained a median Mn concentration of 0.012 mg/kg fresh matter. Mn supplementation had no effect on the Mn blood levels of mares and their foals.

Conclusion and clinical relevance Blood Mn concentrations were not affected by the Mn supplementation. However, the Mn levels differed significantly between serum and whole blood. In addition, the Mn concentrations in whole blood of suckling foals were higher compared to their dams, although the Mn concentrations in the mare’s milk were low regardless of Mn supplementation. Due to the low Mn content in milk, early Mn supply, preferably by forages, is necessary to ensure that the foals are supplied with Mn according to their requirement.

Zusatzmaterial



Publication History

Received: 11 February 2021

Accepted: 12 August 2021

Article published online:
03 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Kääntee E, Kurkela P. The Effects of Trace Element Supplements on Blood Levels of Horses. AFSci 1980; 52 (05) 468-476
  • 2 Kossila V, Tanhuanpää E, Virtanen E. et al. Blood Levels of Hemoglobin, Glucose, Cholesterol, Minerals and Trace Elements in Saddle Horses. I. Differences due to Age and Maintenance. J Scient Agric Soc Finl 1972; 44: 249-257
  • 3 Aschner JL, Aschner M. Nutritional aspects of manganese homeostasis. Molecular Aspects of Medicine 2005; 26 (04/05) 353-362
  • 4 Gelfert CC, Staufenbiel R. Problems in the Evaluation of Manganese Status in Dairy Herds by Herd Supervision. Tierärztl Prax Ausg G Grosstiere Nutztiere 2000; 28 (02) 69-73
  • 5 Herdt TH, Hoff B. The use of blood analysis to evaluate trace mineral status in ruminant livestock. Vet Clin North Am Food Anim Pract 2011; 27 (02) 255-283 vii
  • 6 Kincaid RL. Assessment of Trace Mineral Status of Ruminants: A Review. J Anim Sci 2000; 77 (E-Suppl) 1
  • 7 Ghorbani A, Mohit A, Darmani Kuhi H. Effects of Dietary Mineral Intake on Hair and Serum Mineral Contents of Horses. J Equine Vet Sci 2015; 35 (04) 295-300
  • 8 Paßlack N, Mainzer B, Lahrssen-Wiederholt M. et al. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys. Springer Plus 2014; 3 (01) 343
  • 9 Papavasiliou PS, Miller ST, Cotzias GC. Role of Liver in Regulating Distribution and Excretion of Manganese. Am J Physiol 1966; 211 (01) 211-216
  • 10 Pitropovska E, Pechová A, Hauptmanová K. et al. The effect of manganese supplementation on its concentrations in blood, hair, and organs of goat kids. Acta Vet Brno 2014; 83 (03) 219-224
  • 11 Pallauf J, Kauer C, Most E. et al. Impact of dietary manganese concentration on status criteria to determine manganese requirement in piglets. J Anim Physiol Anim Nutr (Berl) 2012; 96 (06) 993-1002
  • 12 Carter JC, Miller WJ, Neathery MW. et al. Manganese metabolism with oral and intravenous 54Mn young calves as influenced by supplemental manganese. J Anim Sci 1974; 38 (06) 1284-1290
  • 13 Cymbaluk NF, Christensen DA. Copper, zinc and manganese concentrations in equine liver, kidney and plasma. Can Vet J 1986; 27 (05) 206-210
  • 14 Brummer-Holder M, Cassill BD, Hayes SH. Interrelationships Between Age and Trace Element Concentration in Horse Mane Hair and Whole Blood. J Equine Vet Sci 2020; 87: 102922
  • 15 Biricik H, Ocal N, Gucus AI. et al. Seasonal changes of some mineral status in mares. J Equine Vet Sci 2005; 25 (08) 346-348
  • 16 Rehner G, Daniel H. Das Blut – Transportsystem und Vermittler der Homöostase. In: Rehner G, Daniel H. Hrsg. Biochemie der Ernährung. Spektrum Lehrbuch. 3. Aufl.. Heidelberg: Spektrum Akademischer Verlag; 2010: 363-407
  • 17 Lording PM. Erythrocytes. Vet Clin North Am Equine Pract 2008; 24 (02) 225-237
  • 18 Wagner EL, Potter GD, Eller EM. et al. Absorption and Retention of Trace Minerals in Adult Horses. The Professional Animal Scientist 2005; 21 (03) 207-211
  • 19 Kienzle E, Schramme SC. Beurteilung des Ernährungszustandes mittels Body Condition Scores und Gewichtsschätzung beim adulten Warmblutpferd. Pferdeheilk 2004; 20 (06) 517-524
  • 20 Gesellschaft für Ernährungsphysiologie. Hrsg. Empfehlungen zur Energie- und Nährstoffversorgung von Pferden. Nr. 11: Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere. Frankfurt am Main: DLG Verlag; 2014
  • 21 Naumann C, Bassler R, Seibold R. et al. Methodenbuch. Die chemische Untersuchung von Futtermitteln. Darmstadt: VDLUFA-Verlag; 1976
  • 22 Goering HK, van Soest PJ. Forage fiber analyses: apparatus, reagents, procedures, and some applications. Bd. 379. Agricultural Research Service, US Department of Agriculture; 1970
  • 23 Kjeldahl J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für analytische Chemie 1883; 22 (01) 366-382
  • 24 Theiner E, Weber C, Müller E. et al. Mangankonzentrationen im Vollblut, Plasma und Serum adulter Warmblutpferde an 3 Standorten in Deutschland. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49: 234-246
  • 25 Youssef MA, El-Khodery SA, Ibrahim HMM. Antioxidant trace elements in serum of draft horses with acute and chronic lower airway disease. Biol Trace Elem Res 2012; 150 (01/03) 123-129
  • 26 Hidiroglou M, Ho SK, Ivan M. et al. Manganese status of pasturing ewes, of pregnant ewes and doe rabbits on low manganese diets and of dairy cows with cystic ovaries. Can J Comp Med 1978; 42 (01) 100-107
  • 27 Hüter J. Untersuchungen zu ernährungsphysiologischen Kriterien des Manganmangels beim Ferkel [Dissertation]. Gießen: Justus-Liebig-Universität; 2011
  • 28 Watson LT, Ammerman CB, Feaster JP. et al. Influence of manganese intake on metabolism of manganese and other minerals in sheep. J Anim Sci 1973; 36 (01) 131-136
  • 29 Legleiter LR, Spears JW, Lloyd KE. Influence of dietary manganese on performance, lipid metabolism, and carcass composition of growing and finishing steers. J Anim Sci 2005; 83 (10) 2434-2439
  • 30 Hansen SL, Spears JW, Lloyd KE. et al. Growth, reproductive performance, and manganese status of heifers fed varying concentrations of manganese. J Anim Sci 2006; 84 (12) 3375-3380
  • 31 LUFA Nord-West. Heuauswertung 2020 (27.11.2020). Im Internet: https://www.lufa-nord-west.de/index.cfm/action/downloadcenter.html (Stand: 27.11.2020)
  • 32 Richards N, Hinch G, Rowe J. The effect of current grain feeding practices on hindgut starch fermentation and acidosis in the Australian racing Thoroughbred. Austr Vet J 2006; 84 (11) 402-407
  • 33 Au C, Benedetto A, Aschner M. Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology 2008; 29 (04) 569-576
  • 34 Milne DB, Sims RL, Ralston NV. Manganese content of the cellular components of blood. Clin Chem 1990; 36 (03) 450-452
  • 35 Hancock RGV. The Distribution of Manganese in Blood [Dissertation]. Hamilton. Ontario: McMaster University;: 1970
  • 36 Siciliano PD, Culley KD, Engle TE. Effect of trace mineral source (inorganic vs. organic) on trace mineral status in horses. Proc. 17th Equine Nutr. Phys. Soc. Symp., Lexington, KY. ENPS, Savoy, iL.; 2001
  • 37 Ott EA, Johnson EL. Effect of trace mineral proteinates on growth and skeletal and hoof development in yearling horses. J Equine Vet Sci 2001; 21 (06) 287-291
  • 38 Fey K, Kolm G. Fohlenmedizin. Stuttgart: Enke; 2011.
  • 39 Köller G, Gieseler T, Schusser GF. Hematology and serum biochemistry reference ranges of horses of different breeds and age measured with newest clinicopathological methods. Pferdeheilk 2014; 30 (04) 381-393
  • 40 Anderson RR. Comparison of Trace Elements in Milk of Four Species. J Dairy Sci 1992; 75 (11) 3050-3055
  • 41 Csapó-Kiss Z, Stefler J, Martin TG. et al. Composition of mares’ colostrum and milk. Protein content, amino acid composition and contents of macro and micro-elements. Int Dairy J 1995; 5 (04) 403-415
  • 42 Baucus KL, Ralston SL, Rich GA. et al. The effect of copper and zinc supplementation on mineral content of mares’ milk. J Equine Vet Sci 1989; 9 (04) 206-209
  • 43 Kavazis AN, Kivipelto J, Ott EA. Supplementation of broodmares with copper, zinc, iron, manganese, cobalt, iodine, and selenium. J Equine Vet Sci 2002; 22 (10) 460-464
  • 44 Coenen M, Vervuert I. Pferdefütterung. 6. Aufl.. Stuttgart, New York: Thieme; 2020.