CC BY-NC-ND 4.0 · Organic Materials 2021; 3(04): 469-476
DOI: 10.1055/a-1639-2383
Organic Materials in Electronics
Original Article

Incorporating Cyano Groups to a Conjugated Polymer Based on Double B←N-Bridged Bipyridine Units for Unipolar n-Type Organic Field-Effect Transistors

Xu Cao
a  State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. of China
b  University of Science and Technology of China, Hefei, 230023, P. R. of China
$  These authors contributed equally to this work.
,
Yang Min
a  State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. of China
c  University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
$  These authors contributed equally to this work.
,
Hongkun Tian
a  State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. of China
,
a  State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. of China
b  University of Science and Technology of China, Hefei, 230023, P. R. of China
› Author Affiliations


Abstract

The development of n-type semiconductors lags far behind that of their p-type counterparts, demonstrating the exploration of exclusive n-type π-conjugated polymers is significant. The double B←N-bridged bipyridine (BNBP)-based polymers P-BNBP-TVT containing (E)-1,2-di(thiophen-2-yl)ethene (TVT) previously reported exhibits ambipolar character because of the electron-rich nature. Herein, we incorporated strong electron-withdrawing cyano groups into the 3,3′-positions of the TVT moiety to a copolymer P-BNBP-2CNTVT to develop n-type π-conjugated polymers. The LUMO/HOMO energy levels of P-BNBP-2CNTVT are −3.80/−5.95 eV, respectively, which are ~0.4 eV lower than that of P-BNBP-TVT without cyano groups. Unsurprisingly, compared with ambipolar P-BNBP-TVT, the organic field-effect transistors (OFETs) based on P-BNBP-2CNTVT showed unipolar n-type characteristics with an electron mobility of 0.026 cm2 · V−1 · s−1 and a lower threshold voltage of ~25 V as well as high I on/I off of ~105. This study demonstrates that organoboron π-conjugated polymers could be regarded as a tool for constructing exclusive n-type semiconducting polymers used in OFETs.

Supporting Information



Publication History

Received: 24 July 2021

Accepted: 02 September 2021

Publication Date:
07 September 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A. Chem. Rev. 2010; 110: 3
    • 2a Sirringhaus H. Adv. Mater. 2014; 26: 1319
    • 2b Zhao Y, Guo Y, Liu Y. Adv. Mater. 2013; 25: 5372
    • 2c Sun H, Liu B, Ma Y, Lee J.-W, Yang J, Wang J, Li Y, Li B, Feng K, Shi Y, Zhang B, Han D, Meng H, Niu L, Kim BJ, Zheng Q, Guo X. Adv. Mater. 2021; DOI: 10.1002/adma.202102635.
    • 3a Kang I, Yun H.-J, Chung DS, Kwon S.-K, Kim Y.-H. J. Am. Chem. Soc. 2013; 135: 14896
    • 3b Back JY, Yu H, Song I, Kang I, Ahn H, Shin TJ, Kwon S.-K, Oh JH, Kim Y.-H. Chem. Mater. 2015; 27: 1732
  • 4 Meijer EJ, de Leeuw DM, Setayesh S, van Veenendaal E, Huisman BH, Blom PW. M, Hummelen JC, Scherf U, Klapwijk TM. Nat. Mater. 2003; 2: 678
    • 5a Zhao Z, Yin Z, Chen H, Zheng L, Zhu C, Zhang L, Tan S, Wang H, Guo Y, Tang Q, Liu Y. Adv. Mater. 2017; 29: 1602410
    • 5b Fei Z, Han Y, Martin J, Scholes FH, Al-Hashimi M, AlQaradawi SY, Stingelin N, Anthopoulos TD, Heeney M. Macromolecules 2016; 49: 6384
    • 6a Gao Y, Zhang X, Tian H, Zhang J, Yan D, Geng Y, Wang F. Adv. Mater. 2015; 27: 6753
    • 6b Gruber M, Jung S.-H, Schott S, Venkateshvaran D, Kronemeijer AJ, Andreasen JW, McNeill CR, Wong WW. H, Shahid M, Heeney M, Lee J.-K, Sirringhaus H. Chem. Sci. 2015; 6: 6949
    • 6c Yang J, Liu Q, Hu M, Ding S, Liu J, Wang Y, Liu D, Gao H, Hu W, Dong H. Sci. China Chem. 2021; 64: 1410
    • 6d Liu L.-N, Li Y.-P, Khalil M, Xu Z.-W, Xie G, Zhang X, Li J, Li W.-S. Chin. J. Chem. 2020; 38: 1663
    • 6e Yang J, Wang H, Chen J, Huang J, Jiang Y, Zhang J, Shi L, Sun Y, Wei Z, Yu G, Guo Y, Wang S, Liu Y. Adv. Mater. 2017; 29: 1606162
    • 7a Gao Y, Deng Y, Tian H, Zhang J, Yan D, Geng Y, Wang F. Adv. Mater. 2017; 29: 1606217
    • 7b Yang J, Zhao Z, Geng H, Cheng C, Chen J, Sun Y, Shi L, Yi Y, Shuai Z, Guo Y, Wang S, Liu Y. Adv. Mater. 2017; 29: 1702115
    • 7c Kim M, Park W.-T, Park SA, Park CW, Ryu SU, Lee DH, Noh Y.-Y, Park T. Adv. Funct. Mater. 2019; 29: 1805994
    • 7d Lei T, Cao Y, Fan Y, Liu C.-J, Yuan S.-C, Pei J. J. Am. Chem. Soc. 2011; 133: 6099
    • 7e Xue G, Zhao X, Qu G, Xu T, Gumyusenge A, Zhang Z, Zhao Y, Diao Y, Li H, Mei J. ACS Appl. Mater. Interfaces 2017; 9: 25426
    • 7f Lei T, Dou J.-H, Pei J. Adv. Mater. 2012; 24: 6457
    • 8a Chen Z, Wei X, Huang J, Zhou Y, Zhang W, Pan Y, Yu G. ACS Appl. Mater. Interfaces 2019; 11: 34171
    • 8b Chen Z, Zhang W, Huang J, Gao D, Wei C, Lin Z, Wang L, Yu G. Macromolecules 2017; 50: 6098
    • 8c Sui Y, Shi Y, Deng Y, Li R, Bai J, Wang Z, Dang Y, Han Y, Kirby N, Ye L, Geng Y. Macromolecules 2020; 53: 10147
    • 8d Wei C, Zhang W, Huang J, Li H, Zhou Y, Yu G. Macromolecules 2019; 52: 2911
    • 8e Zheng Y.-Q, Lei T, Dou J.-H, Xia X, Wang J.-Y, Liu C.-J, Pei J. Adv. Mater. 2016; 28: 7213
    • 9a Shi S, Wang H, Chen P, Uddin MA, Wang Y, Tang Y, Guo H, Cheng X, Zhang S, Woo HY, Guo X. Polym. Chem. 2018; 9: 3873
    • 9b Iguchi K, Mikie T, Saito M, Komeyama K, Seo T, Ie Y, Osaka I. Chem. Mater. 2021; 33: 2218
    • 9c Wei C, Tang Z, Zhang W, Huang J, Zhou Y, Wang L, Yu G. Polym. Chem. 2020; 11: 7340
    • 9d Yang M, Du T, Zhao X, Huang X, Pan L, Pang S, Tang H, Peng Z, Ye L, Deng Y, Sun M, Duan C, Huang F, Cao Y. Sci. China Chem. 2021; 64: 1219
    • 9e Han W, Wang Z, Hu Y, Yang X, Ge C, Gao X. Sci. China Chem. 2020; 63: 1182
    • 9f Casey A, Han Y, Fei Z, White AJ. P, Anthopoulos TD, Heeney M. J. Mater. Chem. C 2015; 3: 265
    • 9g Kim HG, Kim M, Clement JA, Lee J, Shin J, Hwang H, Sin DH, Cho K. Chem. Mater. 2015; 27: 6858
  • 10 Kim HS, Huseynova G, Noh Y.-Y, Hwang D.-H. Macromolecules 2017; 50: 7550
    • 11a Yu H, Park KH, Song I, Kim M.-J, Kim Y.-H, Oh JH. J. Mater. Chem. C 2015; 3: 11697
    • 11b Choi HH, Baek JY, Song E, Kang B, Cho K, Kwon S.-K, Kim Y.-H. Adv. Mater. 2015; 27: 3626
    • 11c Zhu C, Zhao Z, Chen H, Zheng L, Li X, Chen J, Sun Y, Liu F, Guo Y, Liu Y. J. Am. Chem. Soc. 2017; 139: 17735
    • 12a Shin J, Um HA, Lee DH, Lee TW, Cho MJ, Choi DH. Polym. Chem. 2013; 4: 5688
    • 12b Chen H, Guo Y, Yu G, Zhao Y, Zhang J, Gao D, Liu H, Liu Y. Adv. Mater. 2012; 24: 4618
  • 13 Long X, Gao Y, Tian H, Dou C, Yan D, Geng Y, Liu J, Wang L. Chem. Commun. 2017; 53: 1649
    • 14a Sui Y, Deng Y, Han Y, Zhang J, Hu W, Geng Y. J. Mater. Chem. C 2018; 6: 12896
    • 14b Lei T, Dou J.-H, Ma Z.-J, Yao C.-H, Liu C.-J, Wang J.-Y, Pei J. J. Am. Chem. Soc. 2012; 134: 20025
    • 15a Newman CR, Frisbie CD, da Silva Filho DA, Brédas J.-L, Ewbank PC, Mann KR. Chem. Mater. 2004; 16: 4436
    • 15b Nicolai HT, Kuik M, Wetzelaer GA. H, de Boer B, Campbell C, Risko C, Brédas JL, Blom PW. M. Nat. Mater. 2012; 11: 882
    • 15c Chua L.-L, Zaumseil J, Chang J.-F, Ou EC. W, Ho PK. H, Sirringhaus H, Friend RH. Nature 2005; 434: 194
    • 15d Hauschild M, Borkowski M, Dral PO, Marszalek T, Hampel F, Xie G, Freudenberg J, Bunz UH. F, Kivala M. Org. Mater. 2020; 02: 204
    • 16a Lei T, Wang J.-Y, Pei J. Acc. Chem. Res. 2014; 47: 1117
    • 16b Chochos CL, Economopoulos SP, Deimede V, Gregoriou VG, Lloyd MT, Malliaras GG, Kallitsis JK. J. Phys. Chem. C 2007; 111: 10732
    • 16c Wang H, Huang J, Uddin MA, Liu B, Chen P, Shi S, Tang Y, Xing G, Zhang S, Woo HY, Guo H, Guo X. ACS Appl. Mater. Interfaces 2019; 11: 10089
    • 16d Yun H.-J, Kang S.-J, Xu Y, Kim SO, Kim Y.-H, Noh Y.-Y, Kwon S.-K. Adv. Mater. 2014; 26: 7300
    • 17a Wang X.-Y, Zhuang F.-D, Zhou X, Yang D.-C, Wang J.-Y, Pei J. J. Mater. Chem. C 2014; 2: 8152
    • 17b Zhan X, Zhang J, Gong Y, Tang S, Tu J, Xie Y, Peng Q, Yu G, Li Z. Mater. Chem. Front. 2017; 1: 2341
  • 18 Zhao R, Min Y, Dou C, Lin B, Ma W, Liu J, Wang L. ACS Appl. Polym. Mater. 2020; 2: 19