CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2021; 81(11): 1247-1255
DOI: 10.1055/a-1557-1234
GebFra Science
Original Article

Comparison of Maternal Serum Levels and Placental mRNA Levels of Dickkopf-1 in Preeclamptic and Normal Pregnant Women at Delivery

Vergleich von Dickkopf-1-Konzentrationen in mütterlichem Serum und planzentärem mRNA in Frauen mit Präeklampsie und Frauen mit normaler Schwangerschaft bei der Geburt
Mariz Kasoha
Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
,
Zoltan Takacs
Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
,
Lena Fackiner
Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
,
Christoph Gerlinger
Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
,
Panagiotis Sklavounos
Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
,
Julia Radosa
Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
,
Erich-Franz Solomayer
Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
,
Amr Hamza
Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, Homburg/Saar, Germany
› Author Affiliations

Abstract

Background Preeclampsia remains a major cause of perinatal and maternal mortality and morbidity worldwide. Wnt/β-catenin signaling is known to be critically involved in placenta development processes. Dickkopf-1 (DKK1) is a key regulator of this transduction pathway. The aim of this study is to compare maternal serum DKK1 levels and placental mRNA levels of DKK1 and β-catenin in preeclamptic and normal pregnant women at delivery.

Methods The present study included 30 women with preeclampsia and 30 women with normal pregnancy. Maternal serum DKK1 levels were measured by ELISA. Placental mRNA levels of DKK1 and β-catenin were detected using RT-PCR.

Results Decreased maternal serum DKK1 levels were associated with worse maternal and fetal complications including HELLP syndrome, determination of one or more pathological symptom and IUGR diagnosis. No significant difference in maternal serum DKK1 levels was reported between preeclamptic women and women with normal pregnancy. Placental mRNA DKK1 levels were lower in preeclamptic women compared with normal pregnant women. Placental mRNA β-catenin levels showed no significant difference between two groups.

Conclusions Our findings reported the aberrant placental mRNA DKK1 levels in patients with preeclampsia. In addition, worse preeclampsia features were associated with decreased maternal serum DKK1 levels. Hence, aberrant Wnt/β-catenin signaling might present a plausible mechanism in preeclampsia pathogenicity. Dysregulated expression of DKK1 at gene level in the placenta but not at protein level in the maternal serum might confirm the notion that preeclampsia is a type of placenta-derived disease.

Zusammenfassung

Hintergrund Präeklampsie ist immer noch eine der wesentlichen Ursachen für die perinatale und mütterliche Mortalität und Morbidität weltweit. Wnt/β-Catenin-Signalisierung spielt bekanntlich eine wichtige Rolle bei der Entwicklung der Plazenta, und Dickkopf-1 (DKK1) ist ein zentraler Regulator dieses Transduktionswegs. Ziel dieser Studie war es, die DKK1-Konzentrationen im mütterlichen Serum und die plazentären Konzentrationen von DKK1 und β-Catenin in Frauen mit Präeklampsie und in Frauen mit normaler Schwangerschaft bei der Geburt zu vergleichen.

Methoden Es wurden insgesamt 30 Frauen mit Präeklampsie und 30 Frauen mit normalem Schwangerschaftsverlauf in die Studie aufgenommen. DKK1-Konzentrationen im mütterlichen Serum wurden mit ELISA gemessen. Die plazentären mRNA-Konzentrationen von DKK1 und β-Catenin wurden mithilfe von RT-PCR ermittelt.

Ergebnisse Niedrige DKK1-Konzentrationen im mütterlichen Serum waren mit schlechteren mütterlichen und fötalen Komplikationen assoziiert, darunter HELLP-Syndrom, einem oder mehreren pathologischen Symptomen bzw. der Diagnose einer intrauterinen Wachstumsretardierung. Es wurde kein signifikanter Unterschied in den DKK1-Konzentrationen im mütterlichen Serum zwischen Frauen mit Präeklampsie und Frauen mit normaler Schwangerschaft festgestellt. Die plazentären mRNA-DKK1-Konzentrationen waren niedriger bei Frauen mit Präeklampsie verglichen mit den Konzentrationen bei Frauen mit normaler Schwangerschaft. Es fanden sich aber keine signifikanten Unterschiede in den plazentären mRNA-β-Catenin-Konzentrationen zwischen den beiden Gruppen.

Schlussfolgerungen Unsere Ergebnisse weisen auf abnormale plazentäre mRNA-DKK1-Konzentrationen bei Patientinnen mit Präeklampsie hin. Dazu kommt noch, dass ein schlechterer Verlauf der Präeklampsie mit verminderten DKK1-Konzentrationen im mütterlichen Serum assoziiert ist. Dies weist darauf hin, dass eine abnormale Wnt/β-Catenin-Signalisierung einen plausiblen Mechanismus bei der Pathogenität von Präeklampsie darstellen könnte. Die Dysregulierung der Expression von DKK1 auf der genetischen Ebene in der Plazenta, nicht aber auf der Ebene des Proteins im mütterlichen Serum könnte die These untermauern, dass Präeklampsie eine Art plazentabedingte Erkrankung ist.



Publication History

Received: 12 April 2021

Accepted: 22 July 2021

Article published online:
04 November 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Townsend R, OʼBrien P, Khalil A. Current best practice in the management of hypertensive disorders in pregnancy. Integr Blood Press Control 2016; 9: 79-94 DOI: 10.2147/IBPC.S77344.
  • 2 Peres GM, Mariana M, Cairrão E. Pre-Eclampsia and Eclampsia: An Update on the Pharmacological Treatment Applied in Portugal. J Cardiovasc Dev Dis Actions 2018; 5: 3 DOI: 10.3390/jcdd5010003.
  • 3 Meekins JW, Pijnenborg R, Hanssens M. et al. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol 1994; 101: 669
  • 4 Knöfler M, Haider A, Saleh L. et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 2019; 76: 3479-3496
  • 5 Knöfler M, Pollheimer J. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet 2013; DOI: 10.3389/fgene.2013.00190.
  • 6 Clevers H. Wnt/β-Catenin Signaling in Development and Disease. Cell 2006; 127: 469-480
  • 7 Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 2006; 25: 7469-7481
  • 8 Matoba K, Mihara E, Tamura-Kawakami K. et al. Conformational freedom of the LRP6 ectodomain is regulated by N-glycosylation and the binding of the Wnt antagonist Dkk1. Cell Rep 2017; 18: 32-40
  • 9 Wang Y, van der Zee M, Fodde R. et al. Wnt/Β-catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget 2010; 1: 674-684
  • 10 Fan X, Krieg S, Hwang JY. et al. Dynamic regulation of Wnt7a expression in the primate endometrium: implications for postmenstrual regeneration and secretory transformation. Endocrinology 2012; 153: 1063-1069
  • 11 Atli MO, Guzeloglu A, Dinc DA. Expression of wingless type (WNT) genes and their antagonists at mRNA levels in equine endometrium during the estrous cycle and early pregnancy. Anim Reprod Sci 2011; 125: 94-102
  • 12 Dunlap KA, Filant J, Hayashi K. et al. Postnatal deletion of Wnt7a inhibits uterine gland morphogenesis and compromises adult fertility in mice. Biol Reprod 2011; 85: 386-396
  • 13 Meinhardt G, Haider S, Haslinger P. et al. Wnt-dependent T-cell factor-4 controls human etravillous trophoblast motility. Endocrinology 2014; 155: 1908-1920
  • 14 Turco MY, Gardner L, Kay RG. et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 2018; 564: 263-267
  • 15 Tulac S, Overgaard MT, Hamilton AE. et al. Dickkopf-1, an inhibitor of Wnt signaling, is regulated by progesterone in human endometrial stromal cells. J Clin Endocrinol Metab 2006; 91: 1453-1461
  • 16 Sonderegger S, Husslein H, Leisser C. et al. Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 2007; 28: S97-S102
  • 17 Ng LF, Kaur P, Bunnag N. et al. WNT Signaling in Disease. Cells 2019; 8: 826
  • 18 Soundararajan R, Rao AJ. Trophoblast ʼpseudo-tumorigenesisʼ: Significance and contributory factors. Reprod Biol Endocrinol 2004; 2: 15
  • 19 Zhang Z, Wang X, Zhang L. et al. Wnt/β-catenin signaling pathway in trophoblasts and abnormal activation in preeclampsia (Review). Mol Med Rep 2017; 16: 1007-1013
  • 20 Stepan H, Kuse-Fohl S, Klockenbusch W. et al. Diagnosis and Treatment of Hypertensive Pregnancy Disorders. Guideline of DGGG (S1-Level, AWMF Registry No. 015/018, December 2013). Geburtshilfe Frauenheilkd 2015; 75: 900-914
  • 21 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-408
  • 22 Wei R, Rodrìguez RA, Mullor MDMR. et al. Analyzing the prognostic value of DKK1 expression in human cancers based on bioinformatics. Ann Transl Med 2020; 8: 552
  • 23 Li J, Gao Y, Yue W. The Clinical Diagnostic and Prognostic Value of Dickkopf-1 in Cancer. Cancer Manag Res 2020; 12: 4253-4260
  • 24 Ueland T, Estensen ME, Grindheim G. et al. Elevated levels of the secreted wingless agonist R-spondin 3 in preeclamptic pregnancies. J Hypertens 2020; 38: 1347-1354
  • 25 Tayyar AT, Karakus R, Eraslan Sahin M. et al. Wnt signaling pathway in early- and late-onset preeclampsia: evaluation with Dickkopf-1 and R-Spondin-3 glycoproteins. Arch Gynecol Obstet 2019; 299: 1551-1556
  • 26 Xu H, Wu J, Chen B. et al. Serum Dickkopf-1 (DKK1) is significantly lower in patients with lung cancer but is rapidly normalized after treatment. Am J Transl Res 2014; 22: 850-856
  • 27 Menezes ME, Talukdar S, Wechman SL. et al. Dickkopf1: A tumor suppressor or metastasis promoter?. Adv Cancer Res 2018; 138: 213-237
  • 28 Sibai BM. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 2004; 103: 981-991
  • 29 Karumanchi SA, Maynard SE, Stillman IE. et al. Preeclampsia: a renal perspective. Kidney Int 2005; 67: 2101-2113
  • 30 Pontremoli M, Brioschi M, Baetta R. et al. Identification of DKK-1 as a novel mediator of statin effects in human endothelial cells. Sci Rep 2018; 8: 16671
  • 31 Jiang SJ, Li W, Li YJ. et al. Dickkopf-related protein 1 induces angiogenesis by upregulating vascular endothelial growth factor in the synovial fibroblasts of patients with temporomandibular joint disorders. Mol Med Rep 2015; 12: 4959-4966
  • 32 Barton JR, Oʼbrien JM, Bergauer NK. et al. Mild gestational hypertension remote from term: progression and outcome. Am J Obstet Gynecol 2001; 184: 979-983
  • 33 Tranquilli AL, Dekker G, Magee L. et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: A revised statement from the ISSHP. Pregnancy Hypertens 2014; 4: 97-104
  • 34 Kınay T, Küçük C, Kayıkçıoğlu F. et al. Severe Preeclampsia versus HELLP Syndrome: Maternal and Perinatal Outcomes at < 34 and ≥ 34 Weeksʼ Gestation. Balkan Med J 2015; 32: 359-363
  • 35 Zhang Z, Li H, Zhang L. et al. Differential expression of beta-catenin and dickkopf-1 in the third trimester placentas from normal and preeclamptic pregnancies: a comparative study. Reprod Biol Endocrinol 2013; DOI: 10.1186/1477-7827-11-17.
  • 36 Wang X, Zhang Z, Zeng X. et al. Wnt/β-catenin signaling pathway in severe preeclampsia. J Mol Histol 2018; 49: 317-327
  • 37 Zhang L, Leng M, Li Y. et al. Altered DNA methylation and transcription of WNT2 and DKK1 genes in placentas associated with early-onset preeclampsia. Clin Chim Acta 2019; 490: 154-160
  • 38 Li N, Huang L, Li Y. et al. Lin28B/miR-92b Promote the Proliferation, Migration, and Invasion in the Pathogenesis of Preeclampsia via the DKK1/Wnt/β-Catenin Pathway. Reprod Sci 2020; 27: 815-822
  • 39 Niida A, Hiroko T, Kasai M. et al. DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin/TCF pathway. Oncogene 2004; 23: 8520-8526