CC BY-NC-ND 4.0 · Organic Materials 2021; 3(03): 417-454
DOI: 10.1055/a-1551-6930
Focus Issue: Supramolecular Optoelectronic Materials
Review

Perylene Monoimide as a Versatile Fluoroprobe: The Past, Present, and Future

a  Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
$  These authors contributed equally to this work.
,
a  Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
$  These authors contributed equally to this work.
,
a  Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
$  These authors contributed equally to this work.
,
a  Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
,
a  Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
› Author Affiliations


Dedicated to Prof. Heinz Langhals and Prof. Jonathan S. Lindsey.

Abstract

Perylene dyes have transcended their role as simple colorants and have been reinvigorated as functional dyes. Based on the substitution at the peri-position by six-membered carboxylic imides, the perylene family is principally embellished with perylene diimides (PDIs) and perylene monoimides (PMIs). Perylene dyes are widely acclaimed and adorned on account of their phenomenal thermal, chemical, and photostability juxtaposed with their high absorption coefficient and near-unity fluorescence quantum yield. Although symmetric PDIs have always been in the limelight, their asymmetrical counterpart PMI is already rubbing shoulders, thanks to the consistent efforts of several scientific minds. Recently, there has been an upsurge in engendering PMI-based versatile organic architectures decked with intriguing photophysical properties and pertinent applications. In this review, the synthesis and photophysical features of various PMI-based derivatives along with their relevant applications in the arena of organic photovoltaics, photocatalysis, self-assembly, fluorescence sensing, and bio-imaging are accrued and expounded, hoping to enlighten the less delved but engrossing realm of PMIs.

Table of content:

1 Introduction

2 Advantages of PMI over PDI

3 Challenges in Working with PMI and Ways to Overcome

4 Various Aspects of Reactivity of Different Positions

5 Synthesis of the PMI core

6 Synthesis of PMI Derivatives

6.1 Bromination of PMI

6.2 Synthesis of PMI Derivatives using Coupling Reactions

6.2.1 Suzuki Coupling

6.2.2 Sonogashira Coupling

6.2.3 Buchwald–Hartwig Coupling Reaction

6.3 Nucleophilic Substitution Reactions

6.4 Peri-Annulation Reaction

7 Photophysical Properties of PMI

8 Singlet Fission Properties

9 Förster Resonance Energy Transfer with PMI

10 Symmetry Breaking Charge Transfer Properties

11 Panchromatic Light Absorption Properties of PMI

12 Acid/Base Sensitivity of PMI

13 NIR-Absorbing PMI

14 Achieving of Triplet State Using PMI

15 Solid-State Emissive PMI

16 Thermo-Responsive Materials with PMI

17 Photo-Responsive PMI Derivatives

18 Electrochemical Properties of Rylene Derivative

19 Self-Assembling Properties of PMI Derivatives

20 Applications of PMI in Solar Cells

21 PMIs in Bulk Heterojunction Solar Cells

22 PMIs in Dye-Sensitized Solar Cells

23 PMI as a Fluorescent Reporter

23.1 Application of PMI Derivatives for Bio-Imaging

23.2 Hydrophilic PMIs for Bio-Imaging

23.3 Aggregated PMI as NIR-Emissive Fluoroprobe for Bio-Imaging

24 Photocatalytic Hydrogen Generation using PMI

25 PMI-Based Organocatalysis

26 PMI Derivatives for Single-molecule Spectroscopy

27 Host–Guest Chemistry with PMI

28 Conclusions and Outlook



Publication History

Received: 01 June 2021

Accepted: 13 July 2021

Publication Date:
15 July 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (>https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wächtler M, González L, Dietzek B, Turchanin A, Roth C. Phys. Chem. Chem. Phys. 2019; 21: 8988
    • 1b Ostroverkhova O. Chem. Rev. 2016; 116: 13279
    • 2a Würthner F. Chem. Commun. 2004; 1564
    • 2b Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem. Rev. 2016; 116: 962
  • 3 Chen L, Li C, Müllen K. J. Mater. Chem. C 2014; 2: 1938
    • 4a Weil T, Vosch T, Hofkens J, Peneva K, Müllen K. Angew. Chem. Int. Ed. 2010; 49: 9068
    • 4b Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR. Adv. Mater. 2011; 23: 268
    • 4c Yan C, Barlow S, Wang Z, Yan H, Jen AK. Y, Marder SR, Zhan X. Nat. Rev. Mater. 2018; 3: 18003
    • 4d Yuan Z, Lee S.-L, Chen L, Li C, Mali KS, De Feyter S, Müllen K. Chem. Eur. J. 2013; 19: 11842
    • 4e Liang N, Sun K, Feng J, Chen Y, Meng D, Jiang W, Li Y, Hou J, Wang Z. J. Mater. Chem. A, 2018; 6: 18808
    • 5a Wonneberger H, Ma C.-Q, Gatys MA, Li C, Bäuerle P, Müllen K. J. Phys. Chem. B 2010; 114: 14343
    • 5b Andreas H, Klaus M. Chem. Lett. 2006; 35: 978
    • 5c Gsänger M, Bialas D, Huang L, Stolte M, Würthner F. Adv. Mater. 2016; 28: 3615
    • 6a Biswas S, Sharma V, Kumar P, Koner AL. Sens. Actuators, B 2018; 260: 460
    • 6b Biswas S, Upadhyay N, Kar D, Datta S, Koner AL. Nitric Oxide 2019; 92: 34
    • 6c Kumar P, Biswas S, Koner AL. New J. Chem. 2020; 44: 10771
    • 6d Biswas S, Dutta T, Silswal A, Bhowal R, Chopra D, Koner AL. Chem. Sci. 2021; 12: 9630
    • 7a Zhang F, Ma Y, Chi Y, Yu H, Li Y, Jiang T, Wei X, Shi J. Sci. Rep. 2018; 8: 8208
    • 7b Türkmen G, Erten-Ela S, Icli S. Dyes Pigm. 2009; 83: 297
    • 7c Zhang Y, Chen L, Zhang K, Wang H, Xiao Y. Chem. Eur. J. 2014; 20: 10170
    • 7d Avlasevich Y, Li C, Müllen K. J. Mater. Chem. 2010; 20: 3814
  • 8 Zhao X, Xiong Y, Ma J, Yuan Z. J. Phys. Chem. A 2016; 120: 7554
  • 9 Kardos M. DE Patent 276357, 1913
    • 10a Langhals H, Obermeier A, Floredo Y, Zanelli A, Flamigni L. Chem. Eur. J. 2009; 15: 12733
    • 10b Ventura B, Langhals H, Böck B, Flamigni L. Chem. Commun. 2012; 48: 4226
    • 10c Kölle P, Pugliesi I, Langhals H, Wilcken R, Esterbauer AJ, de Vivie-Riedle R, Riedle E. Phys. Chem. Chem. Phys. 2015; 17: 25061
    • 10d Kirmaier C, Song HE, Yang E, Schwartz JK, Hindin E, Diers JR, Loewe RS, Tomizaki KY, Chevalier F, Ramos L, Birge RR, Lindsey JS, Bocian DF, Holten D. J. Phys. Chem. B 2010; 114: 14249
    • 10e Yang E, Wang JQ, Diers JR, Niedzwiedzki DM, Kirmaier C, Bocian DF, Lindsey JS, Holten D. J. Phys. Chem. B 2014; 118: 1630
    • 10f Hu GF, Liu R, Alexy EJ, Mandal AK, Bocian DF, Holten D, Lindsey JS. New J. Chem. 2016; 40: 8032
    • 10g Kamm V, Battagliarin G, Howard IA, Pisula W, Mavrinskiy A, Li C, Müllen K, Laquai F. Adv. Energy Mater. 2011; 1: 297
    • 10h Dössel LF, Kamm V, Howard IA, Laquai F, Pisula W, Feng X, Li C, Takase M, Kudernac T, De Feyter S, Müllen K. J. Am. Chem. Soc. 2012; 134: 5876
    • 10i Stappert S, Li C, Müllen K, Basché T. Chem. Mater. 2016; 28: 906
    • 10j Li M, Zajaczkowski W, Velpula G, Jänsch D, Graf R, Marszalek T, Parekh SH, Zagranyarski Y, Mali K, Wagner M, De Feyter S, Li C, Müllen K, Pisula W. Chem. Sci. 2020; 11: 4960
    • 10k Lin M.-J, Fimmel B, Radacki K, Würthner F. Angew. Chem. Int. Ed. 2011; 50: 10847
    • 10l Troeger A, Ledendecker M, Margraf JT, Sgobba V, Guldi DM, Vieweg BF, Spiecker E, Suraru S.-L, Würthner F. Adv. Energy Mater. 2012; 2: 536
    • 10m Son M, Park KH, Shao C, Würthner F, Kim D. J. Phys. Chem. Lett. 2014; 5: 3601
    • 10n Herbst S, Soberats B, Leowanawat P, Stolte M, Lehmann M, Würthner F. Nat. Commun. 2018; 9: 2646
    • 10o Schmidt D, Stolte M, Süß J, Liess A, Stepanenko V, Würthner F. Angew. Chem. Int. Ed. 2019; 58: 13385
    • 10p Hartnett PE, Timalsina A, Matte HS. S. R, Zhou N, Guo X, Zhao W, Facchetti A, Chang RP. H, Hersam MC, Wasielewski MR, Marks TJ. J. Am. Chem. Soc. 2014; 136: 16345
    • 10q Hartnett PE, Dyar SM, Margulies EA, Shoer LE, Cook AW, Eaton SW, Marks TJ, Wasielewski MR. Chem. Sci. 2015; 6: 402
    • 10r Lindquist RJ, Phelan BT, Reynal A, Margulies EA, Shoer LE, Durrant JR, Wasielewski MR. J. Mater. Chem. A 2016; 4: 2880
    • 10s Hartnett PE, Mauck CM, Harris MA, Young RM, Wu Y.-L, Marks TJ, Wasielewski MR. J. Am. Chem. Soc. 2017; 139: 749
    • 11a Royakkers J, Minotto A, Congrave DG, Zeng W, Patel A, Bond AD, Bučar D.-K, Cacialli F, Bronstein H. J. Org. Chem. 2020; 85: 207
    • 11b Warnan J, Willkomm J, Farre Y, Pellegrin Y, Boujtita M, Odobel F, Reisner E. Chem. Sci. 2019; 10: 2758
    • 12a Nowak-Król A, Würthner F. Org. Chem. Front. 2019; 6: 1272
    • 12b Ji C, Cheng W, Yuan Q, Müllen K, Yin M. Acc. Chem. Res. 2019; 52: 2266
  • 13 Schlosser F, Moos M, Lambert C, Würthner F. Adv. Mater. 2013; 25: 410
    • 14a Hecht M, Würthner F. Acc. Chem. Res. 2021; 54: 642
    • 14b Chen S, Slattum P, Wang C, Zang L. Chem. Rev. 2015; 115: 11967
  • 15 Oleson A, Zhu T, Dunn IS, Bialas D, Bai Y, Zhang W, Dai M, Reichman DR, Tempelaar R, Huang L, Spano FC. J. Phys. Chem. C 2019; 123: 20567
    • 16a Zhou J, Zhang W, Jiang X.-F, Wang C, Zhou X, Xu B, Liu L, Xie Z, Ma Y. J. Phys. Chem. Lett. 2018; 9: 596
    • 16b Zong L, Zhang H, Li Y, Gong Y, Li D, Wang J, Wang Z, Xie Y, Han M, Peng Q, Li X, Dong J, Qian J, Li Q, Li Z. ACS Nano 2018; 12: 9532
    • 17a Wu Y, Young RM, Frasconi M, Schneebeli ST, Spenst P, Gardner DM, Brown KE, Würthner F, Stoddart JF, Wasielewski MR. J. Am. Chem. Soc. 2015; 137: 13236
    • 17b Conrad-Burton FS, Liu T, Geyer F, Costantini R, Schlaus AP, Spencer MS, Wang J, Sánchez RH, Zhang B, Xu Q, Steigerwald ML, Xiao S, Li H, Nuckolls CP, Zhu X. J. Am. Chem. Soc. 2019; 141: 13143
  • 18 Sharma V, Koenig JD. B, Welch GC. J. Mater. Chem. A 2021; 9: 6775
    • 19a Kumar Y, Kumar S, Bansal D, Mukhopadhyay P. Org. Lett. 2019; 21: 2185
    • 19b Sharma V, Puthumana U, Karak P, Koner AL. J. Org. Chem. 2018; 83: 11458
  • 20 Sun M, Müllen K, Yin M. Chem. Soc. Rev. 2016; 45: 1513
  • 21 Edvinsson T, Li C, Pschirer N, Schöneboom J, Eickemeyer F, Sens R, Boschloo G, Herrmann A, Müllen K, Hagfeldt A. J. Phys. Chem. C 2007; 111: 15137
  • 22 Turrisi R, Sanguineti A, Sassi M, Savoie B, Takai A, Patriarca GE, Salamone MM, Ruffo R, Vaccaro G, Meinardi F, Marks TJ, Facchetti A, Beverina L. J. Mater. Chem. A 2015; 3: 8045
    • 23a Feiler L, Langhals H, Polborn K. Liebigs Ann. Chem. 1995; 1995: 1229
    • 23b Tomizaki KY, Thamyongkit P, Loewe RS, Lindsey JS. Tetrahedron 2003; 59: 1191
  • 24 Chen LC, Zhang KC, Zhu LL, Xiao Y. Ind. Eng. Chem. Res. 2015; 54: 12699
  • 25 Quante H, Müllen K. Angew. Chem. Int. Ed. 1995; 34: 1323
  • 26 Keerthi A, Liu Y, Wang Q, Valiyaveettil S. Chem. Eur. J. 2012; 18: 11669
  • 27 Sahoo D, Sharma V, Roy R, Varghese N, Mohanta K, Koner AL. Chem. Commun. 2019; 55: 103
  • 28 Costabel D, Skabeev A, Nabiyan A, Luo Y, Max JB, Rajagopal A, Kowalczyk D, Dietzek B, Wächtler M, Görls H, Ziegenbalg D, Zagranyarski Y, Streb C, Schacher FH, Peneva K. Chem. Eur. J. 2021; 27: 4081
  • 29 Sharma V, Sahoo D, Chandra F, Koner AL. Chemistryselect 2017; 2: 11747
  • 30 Weber S, Hofinger J, Rath T, Reinfelds M, Pfeifer D, Borisov SM, Fürk P, Amenitsch H, Scharber MC, Trimmel G. Mater. Adv. 2020; 1: 2095
  • 31 Pal K, Sharma V, Sahoo D, Kapuria N, Koner AL. Chem. Commun. 2018; 54: 523
  • 32 Sharma V, Chandra F, Sahoo D, Koner AL. Eur. j. Org. Chem. 2017; 2017: 6901
  • 33 Li C, Schöneboom J, Liu Z, Pschirer NG, Erk P, Herrmann A, Müllen K. Chem. Eur. J. 2009; 15: 878
  • 34 Kazantsev RV, Dannenhoffer AJ, Aytun T, Harutyunyan B, Fairfield DJ, Bedzyk MJ, Stupp SI. Chem 2018; 4: 1596
  • 35 Zagranyarski Y, Chen L, Zhao Y, Wonneberger H, Li C, Müllen K. Org. Lett. 2012; 14: 5444
  • 36 Lin Z, Li C, Meng D, Li Y, Wang ZH. Chem. Asian J. 2016; 11: 2695
  • 37 Feng J, Fu H, Jiang W, Zhang A, Ryu HS, Woo HY, Sun Y, Wang Z. ACS Appl. Mater. Interfaces 2020; 12: 29513
  • 38 Zhao X, Chen X, Yuan Z, Zhang H, Luo G, Hu Y, Chen Y. Dyes Pigm. 2020; 173: 107930
  • 39 Langhals H, Schönmann G, Feiler L. Tetrahedron Lett. 1995; 36: 6423
  • 40 Roznyatovskiy VV, Gardner DM, Eaton SW, Wasielewski MR. Org. Lett. 2014; 16: 696
  • 41 Odobel F, Séverac M, Pellegrin Y, Blart E, Fosse C, Cannizzo C, Mayer CR, Elliott KJ, Harriman A. Chem. Eur. J. 2009; 15: 3130
  • 42 Lefler KM, Kim CH, Wu Y.-L, Wasielewski MR. J. Phys. Chem. Lett. 2014; 5: 1608
  • 43 Tomizaki K, Loewe RS, Kirmaier C, Schwartz JK, Retsek JL, Bocian DF, Holten D, Lindsey JS. J. Org. Chem. 2002; 67: 6519
  • 44 Haase M, Hubner CG, Reuther E, Herrmann A, Mullen K, Basche T. J. Phys. Chem. B 2004; 108: 10445
  • 45 Hestand NJ, Spano FC. Chem. Rev. 2018; 118: 7069
  • 46 Papadopoulos I, Gutiérrez-Moreno D, McCosker PM, Casillas R, Keller PA, Sastre-Santos Á, Clark T, Fernández-Lázaro F, Guldi DM. J. Phys. Chem. A 2020; 124: 5727
  • 47 Czar MF, Breitgoff FD, Sahoo D, Sajid M, Ramezanian N, Polyhach Y, Jeschke G, Godt A, Zenobi R. J. Phys. Chem. Lett. 2019; 10: 6942
  • 48 Song H, Zhao H, Guo Y, Philip AM, Guo Q, Hariharan M, Xia A. J. Phys. Chem. C 2020; 124: 237
  • 49 Hu GF, Kang HS, Mandal AK, Roy A, Kirmaier C, Bocian DF, Holten D, Lindsey JS. RSC Adv. 2018; 8: 23854
  • 50 Alexy EJ, Yuen JM, Chandrashaker V, Diers JR, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Chem. Commun. 2014; 50: 14512
  • 51 Zheng DD, Oskouei MR, Sanders HJ, Qian JH, Williams RM, Brouwer AM. Photochem. Photobiol. Sci. 2019; 18: 524
  • 52 Jiao C, Huang K.-W, Chi C, Wu J. J. Org. Chem. 2011; 76: 661
  • 53 Kohl C, Becker S, Müllen K. Chem. Commun. 2002; 23: 2778
  • 54 Yarnell JE, Chakraborty A, Myahkostupov M, Wright KM, Castellano FN. Dalton Trans. 2018; 47: 15071
  • 55 Zhao YJ, Duan RM, Zhao JZ, Li C. Chem. Commun. 2018; 54: 12329
  • 56 Zhang X, Elmali A, Duan RM, Liu QY, Ji W, Zhao JZ, Li C, Karatay A. Phys. Chem. Chem. Phys. 2020; 22: 6376
  • 57 Cai Y, Ni DQ, Cheng WY, Ji CD, Wang YL, Mullen K, Su ZQ, Liu Y, Chen CY, Yin MZ. Angew. Chem. Int. Ed. 2020; 59: 14014
  • 58 Ding N, Liu K, Qi Y, Shang C, Chang X, Fang Y. Sens. Actuators, B 2021; 340: 129964
  • 59 Huang L, Tam-Chang S.-W, Seo W, Rove K. Adv. Mater. 2007; 19: 4149
  • 60 Roy R, Bhowal R, Sharma V, Chopra D, Koner AL. J. Mater. Chem. C 2021; 9: 1778
  • 61 Chen X, Wang YN, Rong RX, Zhao CM, Li XL, Wang KR. Dyes Pigm. 2019; 160: 779
  • 62 Zhao CM, Wang KR, Wang C, He X, Li XL. ACS Macro Lett. 2019; 8: 381
    • 63a Li C, Yan H, Zhang GF, Gong WL, Chen T, Hu R, Aldred MP, Zhu MQ. Chem. Asian J. 2014; 9: 104
    • 63b Li C, Yan H, Zhao LX, Zhang GF, Hu Z, Huang ZL, Zhu MQ. Nat. Commun. 2014; 5: 1
  • 64 Liou JX, Xin B, Li C, Gong WL, Huang ZL, Tang BZ, Zhu MQ. J. Mater. Chem. C 2017; 5: 9339
  • 65 Gong WL, Xiong ZJ, Xin B, Yin H, Duan JS, Yan J, Chen T, Hua QX, Hu B, Huang ZL, Zhu MQ. J. Mater. Chem. C 2016; 4: 2498
  • 66 Ji C, Lai L, Li P, Wu Z, Cheng W, Yin M. Aggregate 2021; 1
  • 67 Lefler KM, Co DT, Wasielewski MR. J. Phys. Chem. Lett. 2012; 3: 3798
  • 68 Dannenhoffer A, Sai H, Huang DX, Nagasing B, Harutyunyan B, Fairfield DJ, Aytun T, Chin SM, Bedzyk MJ, de la Cruz MO, Stupp SI. Chem. Sci. 2019; 10: 5779
  • 69 Pal K, Sharma V, Koner AL. Chem. Commun. 2017; 53: 7909
  • 70 Kapuria N, Sharma V, Kumar P, Koner AL. J. Mater. Chem. C 2018; 6: 11328
  • 71 Lewandowska U, Zajaczkowski W, Corra S, Tanabe J, Borrmann R, Benetti EM, Stappert S, Watanabe K, Ochs NA. K, Schaeublin R, Li C, Yashima E, Pisula W, Müllen K, Wennemers H. Nat. Chem. 2017; 9: 1068
  • 72 Zafer C, Kus M, Turkmen G, Dincalp H, Demic S, Kuban B, Teoman Y, Icli S. Sol. Energy Mater. Sol. Cells 2007; 91: 427
  • 73 OʼRegan B, Grätzel M. Nature 1991; 353: 737
  • 74 Menekse K, Renner R, Mahlmeister B, Stolte M, Würthner F. Org. Mater. 2020; 02: 229
  • 75 Tong Y, Xiao Z, Du X, Zuo C, Li Y, Lv M, Yuan Y, Yi C, Hao F, Hua Y, Lei T, Lin Q, Sun K, Zhao D, Duan C, Shao X, Li W, Yip H.-L, Xiao Z, Zhang B, Bian Q, Cheng Y, Liu S, Cheng M, Jin Z, Yang S, Ding L. Sci. China Chem. 2020; 63: 758
    • 76a Cremer J, Mena-Osteritz EM, Pschierer NG, Mullen K, Bauerle P. Org. Biomol. Chem. 2005; 3: 985
    • 76b Cremer J, Bäuerle P. Eur. J. Org. Chem. 2005; 2005: 3715
    • 76c Cremer J, Bäuerle P. J. Mater. Chem. C 2006; 16: 874
  • 77 Grätzel M. J. Photochem. Photobiol., C 2003; 4: 145
  • 78 https://www.gamry.com/application-notes/physechem/dssc-dye-sensitized-solar-cells/ (accessed July 19, 2021)
  • 79 Li C, Wonneberger H. Adv. Mater 2012; 24: 613
    • 80a Ferrere S, Gregg BA. New J. Chem. 2002; 26: 1155
    • 80b Ferrere S, Gregg BA. J. Phys. Chem. B 2001; 105: 7602
    • 81a Le Pleux L, Smeigh AL, Gibson E, Pellegrin Y, Blart E, Boschloo G, Hagfeldt A, Hammarstrom L, Odobel F. Energy Environ. Sci. 2011; 4: 2075
    • 81b Mikroyannidis JA, Stylianakis MM, Suresh P, Roy MS, Sharma GD. Energy Environ. Sci. 2009; 2: 1293
    • 82a Nattestad A, Mozer AJ, Fischer MK. R, Cheng YB, Mishra A, Bäuerle P, Bach U. Nat. Mater. 2010; 9: 31
    • 82b Weidelener M, Powar S, Kast H, Yu Z, Boix PP, Li C, Mullen K, Geiger T, Kuster S, Nuesch F, Bach U, Mishra A, Bauerle P. Chem. Asian J. 2014; 9: 3251
    • 82c Qin R, Guo D, Li M, Li G, Bo Z, Wu J. ACS Appl. Energy Mater. 2019; 2: 305
  • 83 Li WQ, Zhou HP, Nawaz MA. H, Niu N, Yang N, Ren J, Yu C. Anal. Methods 2020; 12: 5353
  • 84 Garcia-Calvo J, Robson JA, Torroba T, Wilton-Ely JD. E. T. Chem. Eur. J. 2019; 25: 14214
  • 85 Wang JF, Zhao CM, Yang JX, He X, Li XL, Li JM, Wang KR. Chem. Commun. 2021; 57: 2776
  • 86 Liu JX, Xin B, Li C, Xie NH, Gong WL, Huang ZL, Zhu MQ. ACS Appl. Mater. Interfaces 2017; 9: 10338
  • 87 Liu J.-X, Xin B, Li C, Gong W.-L, Huang Z.-L, Tang B.-Z, Zhu M.-Q. J. Mater. Chem. C 2017; 5: 9339
  • 88 Busto N, Garcia-Calvo J, Cuevas JV, Herrera A, Mergny JL, Pons S, Torroba T, Garcia B. Bioorg. Chem. 2021; 108: 104660
  • 89 Cai Y, Wei Z, Song C, Tang C, Han W, Dong X. Chem. Soc. Rev. 2019; 48: 22
  • 90 Mengji R, Acharya C, Vangala V, Jana A. Chem. Commun. 2019; 55: 14182
  • 91 Jana A, Bai LY, Li X, Agren H, Zhao YL. ACS Appl. Mater. Interfaces 2016; 8: 2336
  • 92 Weingarten AS, Kazantsev RV, Palmer LC, McClendon M, Koltonow AR, Samuel AP. S, Kiebala DJ, Wasielewski MR, Stupp SI. Nat. Chem. 2014; 6: 964
  • 93 Weigarten AS, Dannenhoffer AJ, Kazantsev RV, Sai H, Huang DX, Stupp SI. J. Am. Chem. Soc. 2018; 140: 4965
  • 94 Christ T, Petzke F, Bordat P, Herrmann A, Reuther E, Müllen K, Basché T. J. Lumin. 2002; 98: 23
  • 95 Aryal GH, Huang LM, Hunter KW. RSC Adv. 2016; 6: 82566
  • 96 Aryal GH, ViK R, Assaf KI, Hunter KW, Huang LM, Jayawickramarajah J, Nau WM. Chemistryselect 2018; 3: 4699