Sportverletz Sportschaden 2022; 36(01): 38-48
DOI: 10.1055/a-1551-4388
Übersicht

Tests zur Beurteilung der Bewegungsqualität nach ligamentären Verletzungen des Kniegelenks: eine systematische Übersichtsarbeit

Judging movement quality in patients who sustained a knee ligament injury: a systematic review
Matthias Keller
1   OSINSTITUT ortho & sport, München, Germany
,
Frank Diemer
2   DIGOTOR GbR, Fortbildungen für Orthopädische Medizin und Manuelle Therapie, Brackenheim, Germany
,
Eduard Kurz
1   OSINSTITUT ortho & sport, München, Germany
3   Universitätsklinikum Halle, Halle (Saale), Germany
› Author Affiliations

Zusammenfassung

Hintergrund Rupturen der kapsuloligamentären Strukturen dominieren die Verletzungsstatistik am Kniegelenk. Die Beurteilung posttraumatischer Defizite oder Dysfunktionen bei dynamischen Bewegungsmustern erfolgt sowohl quantitativ als auch qualitativ. Ziel dieser Übersichtsarbeit war es, Werkzeuge, die zur Bewertung der Bewegungsqualität nach einer Kniebandverletzung bei Erwachsenen eingesetzt werden, zusammenzutragen.

Methode In folgenden Primärquellen wurde eine systematische Suche nach Originalarbeiten durchgeführt: Ovid, PubMed, Scopus, Web of Science. Sowohl die konservativen als auch die operativen Therapieoptionen wurden berücksichtigt. PROSPERO Registrierung des Studienprotokolls: CRD42020175359.

Ergebnisse Insgesamt wurden 1153 Arbeiten identifiziert. In diese Arbeit wurden 11 Originalarbeiten aus 4 verschiedenen Arbeitsgruppen eingeschlossen. In allen Arbeiten wurde die Bewegungsqualität bei Erwachsenen nach einer Ruptur des vorderen Kreuzbandes beurteilt. Insgesamt wurden in den eingeschlossenen Studien 348 (70 nicht operiert, 278 rekonstruiert) Patienten nach einer Verletzung des vorderen Kreuzbandes und 119 Erwachsene mit intaktem vorderem Kreuzband untersucht.

Schlussfolgerung In der Praxis ist es möglich, die Bewegungsqualität nach einer Kniebandverletzung mit geringem zeitlichem und technischem Aufwand zu erfassen. Die erfassten Veränderungen resultieren in einem funktionellen Valgus, dessen Ausmaß basierend auf den Ergebnissen der einzelnen Arbeiten in einen isolierten Knievalgus, in einen medialen Kollaps oder einen posturalen Kollaps weiter differenziert werden kann.

Abstract

Background Knee joint injury statistics are dominated by ruptures of the capsular ligament structures. Post-traumatic deficits in dynamic movement patterns are assessed quantitatively as well as qualitatively. The aim of this review was to compile tools that are used to assess the quality of movement after knee ligament injuries in adults.

Methods A systematic search for original papers was carried out in the following primary sources: Ovid, PubMed, Scopus and Web of Science. Both conservative and surgical treatment options were considered. PROSPERO registration of the study protocol: CRD42020175359.

Results A total of 1153 papers were identified. Eleven original papers from four different working groups were included in this work. All papers assessed the quality of movement in adults after anterior cruciate ligament (ACL) injury. A total of 348 (70 deficient, 278 reconstructed) patients after an ACL injury and 119 adults with an intact ACL were examined in the studies included.

Conclusion It is possible to assess movement quality after a knee ligament injury with a low temporal and technical effort. The changes recorded result in a functional valgus, which, based on the study results, may be further differentiated into isolated knee valgus, medial collapse or postural collapse.



Publication History

Article published online:
04 January 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Schneider O, Scharf HP, Stein T. et al. Inzidenz von Kniegelenkverletzungen: Zahlen für die ambulante und stationäre Versorgung in Deutschland. Orthopäde 2016; 45: 1015-1026
  • 2 Bahr R, Krosshaug T. Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med 2005; 39: 324-329
  • 3 Swenson DM, Collins CL, Best TM. et al. Epidemiology of knee injuries among U.S. high school athletes, 2005/2006–2010/2011. Med Sci Sports Exerc 2013; 45: 462-469
  • 4 Myer GD, Paterno MV, Ford KR. et al. Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther 2006; 36: 385-402
  • 5 Keller M, Kurz E, Schmidtlein O. et al. Interdisziplinäre Beurteilungskriterien für die Rehabilitation nach Verletzungen an der unteren Extremität: Ein funktionsbasierter Return to Activity Algorithmus. Sportverletz Sportschaden 2016; 30: 38-49
  • 6 Buckthorpe M. Optimising the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction. Sports Med 2019; 49: 1043-1058
  • 7 van Melick N, van Cingel REH, Brooijmans F. et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med 2016; 50: 1506-1515
  • 8 Logerstedt DS, Scalzitti D, Risberg MA. et al. Knee stability and movement coordination impairments: knee ligament sprain revision 2017. J Orthop Sports Phys Ther 2017; 47: A1-A47
  • 9 Carlson VR, Sheehan FT, Boden BP. Video analysis of anterior cruciate ligament (ACL) injuries: a systematic review. JBJS Rev 2016; 4
  • 10 Hewett TE, Bates NA. Preventive biomechanics: a paradigm shift with a translational approach to injury prevention. Am J Sports Med 2017; 45: 2654-2664
  • 11 Nagelli CV, Hewett TE. Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med 2017; 47: 221-232
  • 12 Paterno MV, Schmitt LC, Ford KR. et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 2010; 38: 1968-1978
  • 13 Barber SD, Noyes FR, Mangine RE. et al Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res 1990: 204–214
  • 14 Moher D, Liberati A, Tetzlaff J. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097
  • 15 Downes MJ, Brennan ML, Williams HC. et al. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 2016; 6: e011458
  • 16 Comerford M, Mottram S. Kinetic control: the management of uncontrolled movement. 1. Aufl.. Chatswood: Elsevier; 2012
  • 17 Michaelson P, Holmberg D, Aasa B. et al. High load lifting exercise and low load motor control exercises as interventions for patients with mechanical low back pain: A randomized controlled trial with 24-month follow-up. J Rehabil Med 2016; 48: 456-463
  • 18 Cronström A, Ageberg E. Association between sensory function and medio-lateral knee position during functional tasks in patients with anterior cruciate ligament injury. BMC Musculoskelet Disord 2014; 15: 430
  • 19 Cronström A. Is poor proprioception associated with worse movement quality of the knee in individuals with anterior cruciate ligament deficiency or reconstruction?. J Phys Ther Sci 2018; 30: 1278-1283
  • 20 Kuenze CM, Trigsted S, Lisee C. et al. Sex differences on the Landing Error Scoring System among individuals with anterior cruciate ligament reconstruction. J Athl Train 2018; 53: 837-843
  • 21 Ageberg E, Roos EM. The association between knee confidence and muscle power, hop performance, and postural orientation in people with anterior cruciate ligament injury. J Orthop Sports Phys Ther 2016; 46: 477-482
  • 22 Nae J, Creaby MW, Nilsson G. et al. Measurement properties of a test battery to assess postural orientation during functional tasks in patients undergoing anterior cruciate ligament injury rehabilitation. J Orthop Sports Phys Ther 2017; 47: 863-873
  • 23 Trulsson A, Garwicz M, Ageberg E. Postural orientation in subjects with anterior cruciate ligament injury: development and first evaluation of a new observational test battery. Knee Surg Sports Traumatol Arthrosc 2010; 18: 814-823
  • 24 Trulsson A, Roos EM, Ageberg E. et al. Relationships between postural orientation and self reported function, hop performance and muscle power in subjects with anterior cruciate ligament injury. BMC Musculoskelet Disord 2010; 11: 143
  • 25 Trulsson A, Miller M, Hansson GA. et al. Altered movement patterns and muscular activity during single and double leg squats in individuals with anterior cruciate ligament injury. BMC Musculoskelet Disord 2015; 16: 28
  • 26 Bell DR, Smith MD, Pennuto AP. et al. Jump-landing mechanics after anterior cruciate ligament reconstruction: a landing error scoring system study. J Athl Train 2014; 49: 435-441
  • 27 Kuenze CM, Foot N, Saliba SA. et al. Drop-landing performance and knee-extension strength after anterior cruciate ligament reconstruction. J Athl Train 2015; 50: 596-602
  • 28 van Melick N, van Rijn L, Nijhuis-van der Sanden MWG. et al. Fatigue affects quality of movement more in ACL-reconstructed soccer players than in healthy soccer players. Knee Surg Sports Traumatol Arthrosc 2019; 27: 549-555
  • 29 Padua DA, Marshall SW, Boling MC. et al. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am J Sports Med 2009; 37: 1996-2002
  • 30 Hewett TE, Myer GD, Ford KR. et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 2005; 33: 492-501
  • 31 Buckthorpe M, Della Villa F. Optimising the “mid-stage” training and testing process after ACL reconstruction. Sports Med 2020; 50: 657-678
  • 32 Della Villa F, Buckthorpe M, Grassi A. et al. Systematic video analysis of ACL injuries in professional male football (soccer): injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br J Sports Med 2020; DOI: 10.1136/bjsports-2019-101247.
  • 33 Krosshaug T, Steffen K, Kristianslund E. et al. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med 2016; 44: 874-883
  • 34 Leppänen M, Pasanen K, Kujala UM. et al. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med 2017; 45: 386-393
  • 35 Dischiavi SL, Wright AA, Hegedus EJ. et al. Framework for optimizing ACL rehabilitation utilizing a global systems approach. Int J Sports Phys Ther 2020; 15: 478-485
  • 36 Cronström A, Creaby MW, Ageberg E. Do knee abduction kinematics and kinetics predict future anterior cruciate ligament injury risk? A systematic review and meta-analysis of prospective studies. BMC Musculoskelet Disord 2020; 21: 563
  • 37 Padua DA, DiStefano LJ, Beutler AI. et al. The Landing Error Scoring System as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J Athl Train 2015; 50: 589-595
  • 38 Smith HC, Johnson RJ, Shultz SJ. et al. A prospective evaluation of the Landing Error Scoring System (LESS) as a screening tool for anterior cruciate ligament injury risk. Am J Sports Med 2012; 40: 521-526
  • 39 Nilstad A, Andersen TE, Kristianslund E. et al. Physiotherapists can identify female football players with high knee valgus angles during vertical drop jumps using real-time observational screening. J Orthop Sports Phys Ther 2014; 44: 358-365
  • 40 Ekegren CL, Miller WC, Celebrini RG. et al. Reliability and validity of observational risk screening in evaluating dynamic knee valgus. J Orthop Sports Phys Ther 2009; 39: 665-674
  • 41 Whatman C, Toomey C, Emery C. Visual rating of movement quality in individuals with and without a history of intra-articular knee injury. Physiother Theory Pract 2019; 1-7 DOI: 10.1080/09593985.2019.1703229.
  • 42 Fox AS, Bonacci J, McLean SG. et al. A systematic evaluation of field-based screening methods for the assessment of anterior cruciate ligament (ACL) injury risk. Sports Med 2016; 46: 715-735
  • 43 Padua DA, Boling MC, Distefano LJ. et al. Reliability of the landing error scoring system-real time, a clinical assessment tool of jump-landing biomechanics. J Sport Rehabil 2011; 20: 145-156
  • 44 Read P, Mc Auliffe S, Wilson MG. et al. Better reporting standards are needed to enhance the quality of hop testing in the setting of ACL return to sport decisions: a narrative review. Br J Sports Med 2021; 55: 23-29
  • 45 Yamazaki J, Muneta T, Ju YJ. et al. Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls. Knee Surg Sports Traumatol Arthrosc 2010; 18: 56-63