Int J Sports Med 2022; 43(01): 11-22
DOI: 10.1055/a-1548-7026
Review

Directions for Exercise Treatment Response Heterogeneity and Individual Response Research

Travis J. Hrubeniuk
1   Interdisciplinary Studies, University of New Brunswick, Fredericton, Canada
2   Cardiometabolic Exercise and Lifestyle Laboratory, University of New Brunswick, Fredericton, Canada
,
Jacob T. Bonafiglia
3   School of Kinesiology and Health Studies, Queen's University, Kingston ON, Canada
,
Danielle R. Bouchard
2   Cardiometabolic Exercise and Lifestyle Laboratory, University of New Brunswick, Fredericton, Canada
4   Faculty of Kinesiology, University of New Brunswick, Fredericton, Canada
,
Brendon J. Gurd
3   School of Kinesiology and Health Studies, Queen's University, Kingston ON, Canada
,
Martin Sénéchal
2   Cardiometabolic Exercise and Lifestyle Laboratory, University of New Brunswick, Fredericton, Canada
4   Faculty of Kinesiology, University of New Brunswick, Fredericton, Canada
› Author Affiliations
Funding: Salary Support for this project was provided by the New Brunswick Health Research Foundation and the Maritime SPOR Support Unit (T.J.H). J.T. Bonafiglia was supported by a NSERC Vanier CGS Scholarship.

Abstract

Treatment response heterogeneity and individual responses following exercise training are topics of interest for personalized medicine. Proposed methods to determine the contribution of exercise to the magnitude of treatment response heterogeneity and categorizing participants have expanded and evolved. Setting clear research objectives and having a comprehensive understanding of the strengths and weaknesses of the available methods are vital to ensure the correct study design and analytical approach are used. Doing so will ensure contributions to the field are conducted as rigorously as possible. Nonetheless, concerns have emerged regarding the ability to truly isolate the impact of exercise training, and the nature of individual responses in relation to mean group changes. The purpose of this review is threefold. First, the strengths and limitations associated with current methods for quantifying the contribution of exercise to observed treatment response heterogeneity will be discussed. Second, current methods used to categorize participants based on their response to exercise will be outlined, as well as proposed mechanisms for factors that contribute to response variation. Finally, this review will provide an overview of some current issues at the forefront of individual response research.



Publication History

Received: 16 February 2021

Accepted: 30 June 2021

Article published online:
16 August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Piercy KL, Troiano RP, Ballard RM. et al The physical activity guidelines for americans. JAMA 2018; 320: 2020-2028 doi:10.1001/jama.2018.14854
  • 2 Tremblay MS, Carson V, Chaput J-P. Introduction to the canadian 24-hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab 2016; 41: iii-iv doi:10.1139/apnm-2016-0203
  • 3 Bull FC, Al-Ansari SS, Biddle S. et al World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 2020; 54: 1451-1462 doi:10.1136/bjsports-2020-102955
  • 4 Lortie G, Simoneau JA, Hamel P. et al Responses of maximal aerobic power and capacity to aerobic training. Int J Sports Med 1984; 05: 232-236 doi:10.1055/s-2008-1025911
  • 5 Prud’homme D, Bouchard C, Leblanc C. et al Sensitivity of maximal aerobic power to training is genotype-dependent. Med Sci Sports Exerc 1984; 16: 489-493
  • 6 Bouchard C, Leon AS, Rao DC. et al The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc 1995; 27: 721-729
  • 7 Bouchard C, An P, Rice T. et al Familial aggregation of Vo2 max response to exercise training: Results from the HERITAGE Family Study. J Appl Physiol (1985) 1999; 87: 1003-1008
  • 8 Williamson PJ, Atkinson G, Batterham AM.. Inter-individual responses of maximal oxygen uptake to exercise training: A critical review. Sports Med 2017; 47: 1501-1513 doi:10.1007/s40279-017-0680-8
  • 9 Avila JJ, Kim SK, Massett MP. Differences in exercise capacity and responses to training in 24 inbred mouse strains. Front Physiol 2017; 8: 974 doi:10.3389/fphys.2017.00974
  • 10 Bouchard C, Blair SN, Church TS. et al Adverse metabolic response to regular exercise: Is it a rare or common occurrence?. PLoS One 2012; 7: e37887 doi:10.1371/journal.pone.0037887
  • 11 Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc 2001; 33 6 Suppl S446-S451
  • 12 Despres JP, Bouchard C, Savard R. et al Adaptive changes to training in adipose tissue lipolysis are genotype dependent. Int J Obes 1984; 8: 87-95
  • 13 Hamel P, Simoneau J-A, Lortie G. et al Heredity and muscle adaptation to endurance training. Med Sci Sports Exerc 1986; 18: 690-696
  • 14 Koch LG, Britton SL. Theoretical and biological evaluation of the link between low exercise capacity and disease risk. Cold Spring Harb Perspect Med 2018; 8: a029868
  • 15 Simoneau JA, Lortie G, Boulay MR. et al Inheritance of human skeletal muscle and anaerobic capacity adaptation to high-intensity intermittent training.. Int J Sports Med 1986; 7: 167-171
  • 16 Walsh JJ, Bonafiglia JT, Goldfield GS. et al Interindividual variability and individual responses to exercise training in adolescents with obesity. Appl Physiol Nutr Metab 2019; 45: 45-54 doi:10.1139/apnm-2019-0088
  • 17 Hrubeniuk MTJ, Hay MJL, MacIntosh MAC. et al Interindividual variation in cardiometabolic health outcomes following 6-months of endurance training in youth at risk of Type 2 Diabetes Mellitus. Appl Physiol Nutr Metab 2021; 46: 727–734
  • 18 Buford TW, Roberts MD, Church TS. Toward exercise as personalized medicine. Sports Med 2013; 43: 157-165 doi:10.1007/s40279-013-0018-0
  • 19 Ross R, Goodpaster BH, Koch LG. et al Precision exercise medicine: understanding exercise response variability. Br J Sports Med 2019; 53: 1141–1153. doi:10.1136/bjsports-2018-100328
  • 20 Atkinson G, Williamson P, Batterham AM. Issues in the determination of ‘responders’ and ‘non-responders’ in physiological research. Exp Physiol 2019; 104: 1215-1225 doi:10.1113/EP087712
  • 21 Bonafiglia JT, Preobrazenski N, Islam H. et al Exploring differences in cardiorespiratory fitness response rates across varying doses of exercise training: A retrospective analysis of eight randomized controlled trials. Sports Med 2021; 51: 1785–1797. doi:10.1007/s40279-021-01442-9
  • 22 Atkinson G, Batterham A. True and false interindividual differences in the physiological response to an intervention. Exp Physiol 2015; 100: 577-588 doi:10.1113/EP085070
  • 23 Bonafiglia JT, Brennan AM, Ross R. et al An appraisal of the SDIR as an estimate of true individual differences in training responsiveness in parallel-arm exercise randomized controlled trials. Physiol Rep 2019; 7: e14163 doi:10.14814/phy2.14163
  • 24 Bonafiglia JT, Nelms MW, Preobrazenski N. et al Moving beyond threshold-based dichotomous classification to improve the accuracy in classifying non-responders. Physiol Rep 2018; 6: e13928 doi:10.14814/phy2.13928
  • 25 Hecksteden A, Kraushaar J, Scharhag-Rosenberger F. et al Individual response to exercise training - a statistical perspective. J Appl Physiol (1985) 2015; 118: 1450-1459 doi:10.1152/japplphysiol.00714.2014
  • 26 Hecksteden A, Pitsch W, Rosenberger F. et al Repeated testing for the assessment of individual response to exercise training.. J Appl Physiol (1985) 2018; 124: 1567–1579. doi:10.1152/japplphysiol.00896.2017
  • 27 Hopkins WG.. Individual responses made easy. J Appl Physiol (1985) 2015; 118: 1444-1446 doi:10.1152/japplphysiol.00098.2015
  • 28 Swinton PA, Hemingway BS, Saunders B. et al A Statistical framework to interpret individual response to intervention: paving the way for personalized nutrition and exercise prescription. Front Nutr 2018; 5: 41. doi:10.3389/fnut.2018.00041
  • 29 Del Giudice M, Bonafiglia JT, Islam H. et al Investigating the reproducibility of maximal oxygen uptake responses to high-intensity interval training. J Sci Med Sport 2020; 23: 94-99 doi:10.1016/j.jsams.2019.09.007
  • 30 Islam H, Edgett BA, Bonafiglia JT. et al Repeatability of exercise-induced changes in mRNA expression and technical considerations for qPCR analysis in human skeletal muscle. Exp Physiol 2019; 104: 407-420 doi:10.1113/EP087401
  • 31 Islam H, Bonafiglia JT, Giudice MD. et al Repeatability of training-induced skeletal muscle adaptations in active young males. J Sci Med Sport 2021; 24: 494–498. doi:10.1016/j.jsams.2020.10.016
  • 32 Lindholm ME, Giacomello S, Solnestam BW. et al The impact of endurance training on human skeletal muscle memory, global isoform expression and novel transcripts. PLoS Genet 2016; 12: e1006294 doi:10.1371/journal.pgen.1006294
  • 33 Hopkins WG. Measures of reliability in sports medicine and science. Sports Med 2000; 30: 1-15 doi:10.2165/00007256-200030010-00001
  • 34 Senn S.. Mastering variation: variance components and personalised medicine. Stat Med 2016; 35: 966-977 doi:10.1002/sim.6739
  • 35 Senn S, Rolfe K, Julious SA. Investigating variability in patient response to treatment – a case study from a replicate cross-over study. Stat Methods Med Res 2011; 20: 657-666 doi:10.1177/0962280210379174
  • 36 Goltz FR, Thackray AE, Atkinson G. et al True interindividual variability exists in postprandial appetite responses in healthy men but is not moderated by the FTO genotype. J Nutr 2019; 149: 1159-1169 doi:10.1093/jn/nxz062
  • 37 Leifer ES, Mikus CR, Karavirta L. et al Adverse cardiovascular response to aerobic exercise training: Is this a concern?. Med Sci Sports Exerc 2016; 48: 20-25 doi:10.1249/MSS.0000000000000752
  • 38 Bonafiglia JT, Ross R, Gurd BJ. The application of repeated testing and monoexponential regressions to classify individual cardiorespiratory fitness responses to exercise training. Eur J Appl Physiol 2019; 119: 889–900. doi:10.1007/s00421-019-04078-w
  • 39 Smith TB, Hopkins WG. Variability and predictability of finals times of elite rowers. Med Sci Sports Exerc 2011; 43: 2155 doi:10.1249/MSS.0b013e31821d3f8e
  • 40 Schulhauser KT, Bonafiglia JT, McKie GL. et al Individual patterns of response to traditional and modified sprint interval training. J Sports Sci 2021; 39: 1077-1087 doi:10.1080/02640414.2020.1857507
  • 41 Sisson SB, Katzmarzyk PT, Earnest CP. et al Volume of exercise and fitness non-response in sedentary, post-menopausal women. Med Sci Sports Exerc 2009; 41: 539-545 doi:10.1249/MSS.0b013e3181896c4e
  • 42 Gurd BJ, Giles MD, Bonafiglia JT. et al Incidence of nonresponse and individual patterns of response following sprint interval training. Appl Physiol Nutr Metab 2015; 41: 229-234 doi:10.1139/apnm-2015-0449
  • 43 Astorino TA, Schubert MM. Individual responses to completion of short-term and chronic interval training: A retrospective study. PLoS One 2014; 9: e97638 doi:10.1371/journal.pone.0097638
  • 44 Bonafiglia JT, Rotundo MP, Whittall JP. et al Inter-individual variability in the adaptive responses to endurance and sprint interval training: A randomized crossover study. PLoS One 2016; 11: e0167790 doi:10.1371/journal.pone.0167790
  • 45 Montero D, Lundby C. Refuting the myth of non-response to exercise training: ‘non-responders’ do respond to higher dose of training. J Physiol 2017; 595: 3377-3387 doi:10.1113/JP273480
  • 46 Lannoy L, de Clarke J, Stotz PJ. et al Effects of intensity and amount of exercise on measures of insulin and glucose: Analysis of inter-individual variability. PLoS One 2017; 12: e0177095 doi:10.1371/journal.pone.0177095
  • 47 Mann TN, Lamberts RP, Lambert MI. High responders and low responders: factors associated with individual variation in response to standardized training. Sports Med 2014; 44: 1113-1124 doi:10.1007/s40279-014-0197-3
  • 48 Roberts MD, Haun CT, Mobley CB. et al Physiological differences between low versus high skeletal muscle hypertrophic responders to resistance exercise training: current perspectives and future research directions. Front Physiol 2018; 9: 834. doi:10.3389/fphys.2018.00834
  • 49 Vellers HL, Kleeberger SR, Lightfoot JT. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mamm Genome 2018; 29: 48-62 doi:10.1007/s00335-017-9732-5
  • 50 Hammond BP, Stotz PJ, Brennan AM. et al Individual variability in waist circumference and body weight in response to exercise. Med Sci Sports Exerc 2019; 51: 315-322 doi:10.1249/MSS.0000000000001784
  • 51 Morton RW, Sato K, Gallaugher MPB. et al Muscle androgen receptor content but not systemic hormones is associated with resistance training-induced skeletal muscle hypertrophy in healthy, young men. Front Physiol 2018; 9: 1373. doi:10.3389/fphys.2018.01373
  • 52 Raleigh JP, Giles MD, Islam H. et al Contribution of central and peripheral adaptations to changes in maximal oxygen uptake following 4 weeks of sprint interval training. Appl Physiol Nutr Metab 2018; 43: 1059-1068 doi:10.1139/apnm-2017-0864
  • 53 Sénéchal M, Swift DL, Johannsen NM. et al Changes in body fat distribution and fitness are associated with changes in hemoglobin A1c after 9 months of exercise training. Diabetes Care 2013; 36: 2843-2849 doi:10.2337/dc12-2428
  • 54 Sénéchal M, Rempel M, Duhamel TA. et al Fitness is a determinant of the metabolic response to endurance training in adolescents at risk of type 2 diabetes mellitus. Obesity 2015; 23: 823-832 doi:10.1002/oby.21032
  • 55 Bamman MM, Petrella JK, Kim J. et al Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol (1985) 2007; 102: 2232-2239 doi:10.1152/japplphysiol.00024.2007
  • 56 Petrella JK, Kim J-S, Mayhew DL. et al Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: a cluster analysis. J Appl Physiol (1985) 2008; 104: 1736-1742 doi:10.1152/japplphysiol.01215.2007
  • 57 Stec MJ, Kelly NA, Many GM. et al Ribosome biogenesis may augment resistance training-induced myofiber hypertrophy and is required for myotube growth in vitro. Am J Physiol Endocrinol Metab 2016; 310: E652-E661 doi:10.1152/ajpendo.00486.2015
  • 58 Marsh CE, Thomas HJ, Naylor LH. et al Fitness and strength responses to distinct exercise modes in twins: Studies of Twin Responses to Understand Exercise as a THerapy (STRUETH) study. J Physiol 2020; 598: 3845–3858; n/a. doi:10.1113/JP280048
  • 59 Hopkins W. Precision of the estimate of a subject’s true value (Excel spreadsheet). In: a new view of statistics. 2000. Im Internet: www.sportsci.org/resource/stats/xprecisionsubject
  • 60 Aisbett J, Lakens D, Sainani K. Magnitude based inference in relation to one-sided hypotheses testing procedures. SportRχiv 2020. doi:10.31236/osf.io/pn9s3
  • 61 Barker RJ, Schofield MR. Inference about magnitudes of effects. Int J Sports Physiol Perform 2008; 3: 547-557 doi:10.1123/ijspp.3.4.547
  • 62 Borg DN, Minett GM, Stewart IB. et al Bayesian methods might solve the problems with magnitude-based inference. Med Sci Sports Exerc 2018; 50: 2609-2610 doi:10.1249/MSS.0000000000001736
  • 63 Curran-Everett D.. Magnitude-based inference: Good idea but flawed approach. Med Sci Sports Exerc 2018; 50: 2164-2165 doi:10.1249/MSS.0000000000001646
  • 64 Lohse K, Sainani K, Taylor J. et al Systematic review of the use of „Magnitude-Based Inference“ in sports science and medicine. SportRχiv 2020. doi:10.31236/osf.io/wugcr
  • 65 Sainani KL. The problem with “magnitude-based inference”. Med Sci Sports Exerc 2018; 50: 2166–2176. doi:10.1249/ MSS.0000000000001645
  • 66 Sainani KL, Lohse KR, Jones PR. et al Magnitude-based inference is not bayesian and is not a valid method of inference. Scand J Med Sci Sports 2019; 29: 1428-1436 doi:10.1111/sms.13491
  • 67 Welsh AH, Knight EJ. “Magnitude-based Inference”: A statistical review. Med Sci Sports Exerc 2015; 47: 874-884 doi:10.1249/MSS.0000000000000451
  • 68 Massett MP, Fan R, Berk BC. Quantitative trait loci for exercise training responses in FVB/NJ and C57BL/6J mice. Physiol Genomics 2009; 40: 15-22 doi:10.1152/physiolgenomics.00116.2009
  • 69 Sarzynski MA, Ghosh S, Bouchard C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J Physiol 2017; 595: 2931-2939 doi:10.1113/JP272559
  • 70 Ross R, de Lannoy L, Stotz PJ. Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clin Proc 2015; 90: 1506-1514 doi:10.1016/j.mayocp.2015.07.024
  • 71 Seward S, Ramos J, Drummond C. et al Inter-individual variability in metabolic syndrome severity score and VO2max changes following personalized, community-based exercise programming. Int J Environ Res Public Health 2019; 16: 4855 doi:10.3390/ijerph16234855
  • 72 Weatherwax RM, Harris NK, Kilding AE. et al Incidence of VO2max responders to personalized versus standardized exercise prescription. Med Sci Sports Exerc 2019; 51: 681-691 doi:10.1249/MSS.0000000000001842
  • 73 Wolpern AE, Burgos DJ, Janot JM. et al Is a threshold-based model a superior method to the relative percent concept for establishing individual exercise intensity? a randomized controlled trial. BMC Sports Sci Med Rehabil 2015; 7: 16 doi:10.1186/s13102-015-0011-z
  • 74 Phillips BE, Kelly BM, Lilja M. et al A practical and time-efficient high-intensity interval training program modifies cardio-metabolic risk factors in adults with risk factors for type ii diabetes. Front Endocrinol (Lausanne) 2017; 8: 229. doi:10.3389/fendo.2017.00229
  • 75 Hrubeniuk TJ, Bouchard DR, Gurd BJ. et al Can non-responders be “rescued“ by increasing exercise intensity? A quasi-experimental trial of individual responses among humans living with pre-diabetes or type 2 diabetes mellitus in Canada. BMJ Open 2021; 11: e044478 doi:10.1136/bmjopen-2020-044478
  • 76 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 doi:10.1055/a-1015-3123