Planta Med 2022; 88(12): 1020-1025
DOI: 10.1055/a-1542-8992
Biological and Pharmacological Activity

The Influence of Turmeric and Curcumin on Female Reproductive Processes

Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, Nitra, Slovakia
› Author Affiliations
Supported by: Vedecká Grantová Agentúra MŠVVaŠ SR a SAV VEGA 13-ENV1321-02
Supported by: Agentúra na Podporu Výskumu a Vývoja APVV-15-0296


The present review summarizes the available knowledge concerning the action of curcumin, the best-known polyphenol among the rhizomes of Curcumas, on female reproductive processes and their dysfunctions. Curcumin affects a number of physiological processes, including female reproduction (puberty, reproductive aging, ovarian follicullogenesis and oogenesis, and fecundity). Curcumin can affect these processes via changes in the release and reception of pituitary and ovarian hormones, growth factors and cytokines. Furthermore, it can influence the response of ovarian cells to these substances and external environmental factors. Finally, curcumin can affect oxidative processes within the ovary and numerous intracellular signalling pathways related to ovarian cell proliferation and apoptosis. These effects suggest the applicability of curcumin for stimulation of female reproductive processes in vivo and in vitro, as well as for the prevention, mitigation, and treatment of various reproductive disorders from ovarian insufficiency and infertility to polycystic ovarian syndrome and ovarian cancer.

Publication History

Received: 19 February 2021

Accepted after revision: 22 June 2021

Article published online:
20 August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Lestari ML, Indrayanto G. Curcumin. Profiles Drug Subst Excip Relat Methodol 2014; 39: 113-204
  • 2 Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol 2017; 174: 1325-1348
  • 3 Dosoky NS, Setzer WN. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients 2018; 10: 1196
  • 4 Ahmad RS, Hussain MB, Sultan MT, Arshad MS, Waheed M, Shariati MA, Plygun S, Hashempur MH. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: A mechanistic review. Evid Based Complement Alternat Med 2020; 2020: 7656919
  • 5 Tang C, Li L, Shi J, Wu D, Wang M, Wu Y, Yuan X. Curcumin in age-related diseases. Pharmazie 2020; 75: 534-539
  • 6 Mohebbati R, Anaeigoudari A, Khazdair MR. The effects of Curcuma longa and curcumin on reproductive systems. Endocr Regul 2017; 51: 220-228
  • 7 Tricco AC, Lillie E, Zarin W, OʼBrien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tunçalp Ö, Straus SE. PRISMA extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med 2018; 169: 467-473
  • 8 Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 2015; 35: 645-651
  • 9 Nayak AP, Mills T, Norton I. Lipid based nanosystems for curcumin: past, present and future. Curr Pharm Des 2016; 22: 4247-4256
  • 10 Bahrami A, Sathyapalan T, Moallem SA, Sahebkar A. Counteracting arsenic toxicity: Curcumin to the rescue?. J Hazard Mater 2020; 400: 123160
  • 11 Moody R, Wilson K, Jaworowski A, Plebanski M. Natural compounds with potential to modulate cancer therapies and self-reactive immune cells. Cancers (Basel) 2020; 12: 673
  • 12 Japheth KP, Kumaresan A, Patbandha TK, Baithalu RK, Selvan AS, Nag P, Manimaran A, Oberoi PS. Supplementation of a combination of herbs improves immunity, uterine cleansing and facilitate early resumption of ovarian cyclicity: A study on post-partum dairy buffaloes. J Ethnopharmacol 2021; 272: 113931
  • 13 Liu Y, Sun H, Makabel B, Cui Q, Li J, Su C, Ashby jr. CR, Chen Z, Zhang J. The targeting of non-coding RNAs by curcumin: Facts and hopes for cancer therapy (Review). Oncol Rep 2019; 42: 20-34
  • 14 Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A. Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 2016; 20: 335-345
  • 15 Tossetta G, Fantone S, Giannubilo SR, Marzioni D. The multifaced actions of curcumin in pregnancy outcome. Antioxidants (Basel) 2021; 10: 126
  • 16 Rai M, Ingle AP, Pandit R, Paralikar P, Anasane N, Santos CAD. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Rev Anti Infect Ther 2020; 18: 367-379
  • 17 Inano H, Onoda M, Inafuku N, Kubota M, Kamada Y, Osawa T, Kobayashi H, Wakabayashi K. Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis 2000; 21: 1835-1841
  • 18 Murphy CJ, Tang H, Van Kirk EA, Shen Y, Murdoch WJ. Reproductive effects of a pegylated curcumin. Reprod Toxicol 2012; 34: 120-124
  • 19 Azami SH, Nazarian H, Abdollahifar MA, Eini F, Farsani MA, Novin MG. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice. Reprod Fertil Dev 2020; 32: 292-303
  • 20 Tiwari-Pandey R, Ram Sairam M. Modulation of ovarian structure and abdominal obesity in curcumin- and flutamide-treated aging FSH-R haploinsufficient mice. Reprod Sci 2009; 16: 539-550
  • 21 Yan Z, Dai Y, Fu H, Zheng Y, Bao D, Yin Y, Chen Q, Nie X, Hao Q, Hou D, Cui Y. Curcumin exerts a protective effect against premature ovarian failure in mice. J Mol Endocrinol 2018; 60: 261-271
  • 22 Melekoglu R, Ciftci O, Eraslan S, Cetin A, Basak N. Beneficial effects of curcumin and capsaicin on cyclophosphamide-induced premature ovarian failure in a rat model. J Ovarian Res 2018; 11: 33
  • 23 Koca SB, Yigit NO, Ozdogan HBE, Ozmen O. Reversible sterilization by supplementing turmeric (Curcuma longa) powder to diets of female Pseudotropheus socolofi . Fish Physiol Biochem 2020; 46: 1199-1205
  • 24 Destici Isgoren G, Dilbaz B, Erturk Aksakal S, Kiykac Altinbas S, Yildirim Z, Simsek G, Tapisiz OL. Impact of curcumin on ovarian reserve after tubal ligation: An experimental study. Reprod Sci 2021; DOI: 10.1007/s43032-021-00468-8.
  • 25 Sirotkin AV, Kadasi A, Stochmalova A, Balazi A, Földesiová M, Makovicky P, Chrenek P, Harrath AH. Effect of turmeric on the viability, ovarian folliculogenesis, fecundity, ovarian hormones and response to luteinizing hormone of rabbits. Animal 2018; 12: 1242-1249
  • 26 Kádasi A, Maruniaková N, Štochmaľová A, Bauer M, Grossmann R, Harrath AH, Kolesárová A, Sirotkin AV. Direct effect of curcumin on porcine ovarian cell functions. Anim Reprod Sci 2017; 182: 77-83
  • 27 Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim) 2010; 343: 489-499
  • 28 Watson JL, Greenshields A, Hill R, Hilchie A, Lee PW, Giacomantonio CA, Hoskin DW. Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol Carcinog 2010; 49: 13-24
  • 29 Rath KS, McCann GA, Cohn DE, Rivera BK, Kuppusamy P, Selvendiran K. Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs. J Ovarian Res 2013; 6: 35
  • 30 Seo JA, Kim B, Dhanasekaran DN, Tsang BK, Song YS. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells. Cancer Lett 2016; 371: 30-37
  • 31 Bondì ML, Emma MR, Botto C, Augello G, Azzolina A, Di Gaudio F, Craparo EF, Cavallaro G, Bachvarov D, Cervello M. Biocompatible lipid nanoparticles as carriers to improve curcumin efficacy in ovarian cancer treatment. J Agric Food Chem 2017; 65: 1342-1352
  • 32 Dwivedi P, Yuan S, Han S, Mangrio FA, Zhu Z, Lei F, Ming Z, Cheng L, Liu Z, Si T, Xu RX. Core-shell microencapsulation of curcumin in PLGA microparticles: programmed for application in ovarian cancer therapy. Artif Cells Nanomed Biotechnol 2018; 46 (sup3): S481-S491
  • 33 Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Ramezani M, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue with antitumor properties. J Cell Physiol 2018; 233: 9247-9260
  • 34 Duse L, Agel MR, Pinnapireddy SR, Schäfer J, Selo MA, Ehrhardt C, Bakowsky U. Photodynamic therapy of ovarian carcinoma cells with curcumin-loaded biodegradable polymeric nanoparticles. Pharmaceutics 2019; 11: 282
  • 35 Fatemi Abhari SM, Khanbabaei R, Hayati Roodbari N, Parivar K, Yaghmaei P. Curcumin-loaded super-paramagnetic iron oxide nanoparticle affects on apoptotic factors expression and histological changes in a prepubertal mouse model of polycystic ovary syndrome-induced by dehydroepiandrosterone – A molecular and stereological study. Life Sci 2020; 249: 117515
  • 36 Voznesensʼka Tlu. Bryzhina TM, Sukhina VS, Makohon NV, Aleksieieva IM. [Effect of NF-kappaB activation inhibitor curcumin on the oogenesis and follicular cell death in immune ovarian failure in mice]. Fiziol Zh 2010; 56: 96-101
  • 37 Alekseyeva IN, Makogon NV, Bryzgina TM, Voznesenskaya TY, Sukhina VS. Effects of NF-κB blocker curcumin on oogenesis and immunocompetent organ cells in immune ovarian injury in mice. Bull Exp Biol Med 2011; 151: 432-435
  • 38 Sirotkin AV. Regulators of ovarian Functions. Hauppauge, NY, USA: Nova Science Publishers, Inc.; 2014: 194
  • 39 Purwaningsih E, Soejono SK, Dasuki D, Meiyanto E. Curcumin inhibits luteal cell steroidogenesis by suppression of extracellular signal regulated kinase. Universa Medicina 2012; 31: 73-80
  • 40 Bachmeier BE, Mirisola V, Romeo F, Generoso L, Esposito A, Dellʼeva R, Blengio F, Killian PH, Albini A, Pfeffer U. Reference profile correlation reveals estrogen-like transcriptional activity of Curcumin. Cell Physiol Biochem 2010; 26: 471-482
  • 41 Sirotkin AV, Harrath AH. Phytoestrogens and their effects. Eur J Pharmacol 2014; 741: 230-236
  • 42 Valentine SP, Le Nedelec MJ, Menzies AR, Scandlyn MJ, Goodin MG, Rosengren RJ. Curcumin modulates drug metabolizing enzymes in the female Swiss Webster mouse. Life Sci 2006; 78: 2391-2398
  • 43 Mohammadi S, Kayedpoor P, Karimzadeh-Bardei L, Nabiuni M. The effect of curcumin on TNF-α, IL-6 and CRP expression in a model of polycystic ovary syndrome as an inflammation state. J Reprod Infertil 2017; 18: 352-360
  • 44 Heshmati J, Golab F, Morvaridzadeh M, Potter E, Akbari-Fakhrabadi M, Farsi F, Tanbakooei S, Shidfar F. The effects of curcumin supplementation on oxidative stress, Sirtuin-1 and peroxisome proliferator activated receptor γ coactivator 1α gene expression in polycystic ovarian syndrome (PCOS) patients: A randomized placebo-controlled clinical trial. Diabetes Metab Syndr 2020; 14: 77-82
  • 45 Aktas C, Kanter M, Kocak Z. Antiapoptotic and proliferative activity of curcumin on ovarian follicles in mice exposed to whole body ionizing radiation. Toxicol Ind Health 2012; 28: 852-863
  • 46 Sak ME, Soydinc HE, Sak S, Evsen MS, Alabalik U, Akdemir F, Gul T. The protective effect of curcumin on ischemia-reperfusion injury in rat ovary. Int J Surg 2013; 11: 967-970
  • 47 Eser A, Hizli D, Haltas H, Namuslu M, Kosus A, Kosus N, Kafali H. Effects of curcumin on ovarian ischemia-reperfusion injury in a rat model. Biomed Rep 2015; 3: 807-813
  • 48 Qin X, Cao M, Lai F, Yang F, Ge W, Zhang X, Cheng S, Sun X, Qin G, Shen W, Li L. Oxidative stress induced by zearalenone in porcine granulosa cells and its rescue by curcumin in vitro . PLoS One 2015; 10: e0127551
  • 49 Arozal W, Ramadanty WT, Louisa M, Satyana RPU, Hartono G, Fatrin S, Purbadi S, Estuningtyas A, Instiaty I. Pharmacokinetic profile of curcumin and nanocurcumin in plasma, ovary, and other tissues. Drug Res (Stuttg) 2019; 69: 559-564