Synthesis 2021; 53(21): 4079-4085
DOI: 10.1055/a-1542-4258
paper

Synthesis of (Hetero)Aryl-Functionalized Azaindoline Derivatives by Palladium-Catalyzed Domino Heck Cyclization/Hiyama Cross-Coupling

Hao Ye
a   College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. of China
,
Ruotong Zhang
a   College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. of China
,
Xiaolong Xia
b   School of Textile and Clothing, Nantong University, Nantong 226019, P. R. of China
,
Yue Ding
a   College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. of China
c   Anhui Haifeng Analysis and Testing Technology Co. Ltd, Hefei 230000, P. R. of China
,
Meihui Sun
a   College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. of China
c   Anhui Haifeng Analysis and Testing Technology Co. Ltd, Hefei 230000, P. R. of China
,
Lei Shi
a   College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. of China
,
Guomin Jiang
a   College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. of China
,
Xin-Xing Wu
a   College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. of China
› Author Affiliations
The generous financial support from the Program of High-Level Talents of Nantong University (03083031) is gratefully acknowledged.


Abstract

A palladium-catalyzed domino Heck cyclization/Hiyama cross-coupling has been achieved for the synthesis of (hetero)aryl-functionalized azaindoline derivatives bearing all-carbon quaternary centers in 46–85% yields. The synthetic versatility of this protocol has been highlighted by the gram-scale synthesis and modification of aryl-containing complex bioactive molecules.

Supporting Information



Publication History

Received: 24 May 2021

Accepted after revision: 01 July 2021

Accepted Manuscript online:
01 July 2021

Article published online:
22 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gonzalez-Lopez De Turiso F, Shin Y, Brown M, Cardozo M, Chen Y, Fong D, Hao X, He X, Henne K, Hu YL, Johnson MG, Kohn T, Lohman J, McBride HJ, McGee LR, Medina JC, Metz D, Miner K, Mohn D, Pattaropong V, Seganish J, Simard JL, Wannberg S, Whittington DA, Yu G, Cushing TD. J. Med. Chem. 2012; 55: 7667
    • 2a Grigg R, Loganathan V, Sridharan V, Stevenson P, Sukirthalingam S, Worakun T. Tetrahedron 1996; 52: 11479
    • 2b Grigg R, Mariani E, Sridharan V. Tetrahedron Lett. 2001; 42: 8677

      For selected examples, see:
    • 3a Yoon H, Jang YJ, Lautens M. Synthesis 2016; 48: 1483
    • 3b Petrone DA, Yoon H, Weinstabl H, Lautens M. Angew. Chem. Int. Ed. 2014; 53: 7908
    • 3c Newman SG, Lautens M. J. Am. Chem. Soc. 2011; 133: 1778
    • 3d Zhu Q, Lu Y. Angew. Chem. Int. Ed. 2010; 49: 7753
    • 3e Leroi C, Bertin D, Dufils PE, Gigmes D, Marque S, Tordo P, Couturier JL, Guerret O, Ciufolini MA. Org. Lett. 2003; 5: 4943
    • 3f Yip K.-T, Yang M, Law K.-L, Zhu N.-Y, Yang D. J. Am. Chem. Soc. 2006; 128: 3130
    • 3g Larock RC, Babu S. Tetrahedron Lett. 1987; 28: 5291
    • 3h Ju B, Chen S, Kong W. Org. Lett. 2019; 21: 9343
    • 3i Liang R.-X, Wang K, Wu Q, Sheng W.-J, Jia Y.-X. Organometallics 2019; 38: 3927
    • 3j Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science 2013; 340: 1065
    • 3k Yao T, He D. Org. Lett. 2017; 19: 842
    • 3l Wang Y, Yang B, Wu X.-X, Wu Z.-G. Synthesis 2021; 53: 889
    • 3m Liu R.-R, Xu T.-F, Wang Y.-G, Xiang B, Gao J.-R, Jia Y.-X. Chem. Commun. 2016; 52: 13664
    • 3n Liu X, Ma X, Huang Y, Gu Z. Org. Lett. 2013; 15: 4814
    • 3o Liu X, Li B, Gu Z. J. Org. Chem. 2015; 80: 7547
    • 3p Zhou M.-B, Huang X.-C, Liu Y.-Y, Song R.-J, Li J.-H. Chem. Eur. J. 2014; 20: 1843
  • 4 Day J, Frederickson M, Hogg C, Johnson C, Meek A, Northern J, Reader M, Reid G. Synlett 2015; 26: 2570
  • 5 Schempp DT. T, Daniels BE, Staben ST, Stivala CE. Org. Lett. 2017; 19: 3616
  • 6 Wu X.-X, Liu A, Xu S, He J, Sun W, Chen S. Org. Lett. 2018; 20: 1538

    • For selected reviews on Hiyama cross-coupling, see:
    • 7a Denmark SE, Sweis RF. Acc. Chem. Res. 2002; 35: 835
    • 7b Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
    • 7c Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631

      For selected examples and references therein, see:
    • 8a Alacid E, Nájera C. J. Org. Chem. 2008; 73: 2315
    • 8b Monguchi Y, Yanase T, Mori S, Sajiki H. Synthesis 2013; 45: 40
    • 8c Gordillo I, de Jesús E, López-Mardomingo C. Org. Lett. 2006; 8: 3517
    • 8d Sreedhar B, Kumar AS, Yada D. Synlett 2011; 1081
    • 8e Srimani D, Sawoo S, Sarkar A. Org. Lett. 2007; 9: 3639
    • 8f Shi S, Zhang Y. J. Org. Chem. 2007; 72: 5927
    • 9a Denmark SE. J. Am. Chem. Soc. 1999; 121: 5821
    • 9b Raders SM, Kingston JV, Verkade JG. J. Org. Chem. 2010; 75: 1744
    • 10a Liu Z, Luan N, Shen L, Li J, Zou D, Wu Y, Wu Y. J. Org. Chem. 2019; 84: 12358
    • 10b Lee J.-Y, Fu GC. J. Am. Chem. Soc. 2003; 125: 5616
    • 10c Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722
    • 10d Zhang Z.-M, Xu B, Wu L, Wu Y, Qian Y, Zhou L, Liu Y, Zhang J. Angew. Chem. Int. Ed. 2019; 58: 14653
    • 11a Wu X.-X, Ye H, Dai H, Yang B, Wang Y, Chen S, Hu L. Org. Chem. Front. 2020; 7: 2731
    • 11b Wu X.-X, Ye H, Jiang G, Hu L. Org. Biomol. Chem. 2021; 19: 4254
    • 11c Wu X.-X, Ye H, Li M, Qian J, Dai H, Shi Y. Org. Chem. Front. 2021; 8: 560
    • 12a Lu M.-Z, Luo H, Hu Z, Shao C, Kan Y, Loh T.-P. Org. Lett. 2020; 22: 9022
    • 12b Lu M.-Z, Ding X, Shao C, Hu Z, Luo H, Zhi S, Hui H, Kan Y, Loh T.-P. Org. Lett. 2020; 22: 2663