Subscribe to RSS
DOI: 10.1055/a-1534-6928
Quantitative Removal of Pyrrolizidine Alkaloids from Essential Oils by the Hydrodistillation Step in Their Manufacturing Process
Abstract
Pyrrolizidine alkaloids are naturally occurring toxins produced by certain weeds that can, if accidentally co-harvested, contaminate plant-based food, feed, and herbal medicinal products. Focusing on herbal medicinal products, the presence of pyrrolizidine alkaloids is restricted by regulatory prescribed thresholds to assure patient safety. Among the multitude of different herbal active substances utilized in herbal medicinal products, the class of pharmaceutically effective essential oils is considered to exhibit a negligible contribution to pyrrolizidine alkaloid contamination. Within the present investigation, this hypothesis should be scientifically scrutinized. For this purpose, an experimental set-up was chosen that reproduces the typical manufacturing step of hydrodistillation. Essential oils of eucalyptus and lemon were selected exemplarily and spiked with 3 representative pyrrolizidine alkaloids (retrorsine, retrorsine-N-oxide, and lycopsamine), whereupon hydrodistillation was performed. Analysis of the resulting distillates by LC-MS/MS proved that artificially added pyrrolizidine alkaloids were removed completely. Moreover, quantitative pyrrolizidine alkaloid recovery in the aqueous phases was observed. Hence, it was experimentally confirmed that herbal medicinal products employing hydrodistilled essential oils of pharmaceutical quality are intrinsically free of pyrrolizidine alkaloids due to the particularities of their manufacturing process. Furthermore, it can be concluded from theoretical considerations that essential oils produced by cold pressing have a negligible risk of carrying pyrrolizidine alkaloid contamination. Our findings provide a strong indication that the requirement for analytical pyrrolizidine alkaloid testing of essential oils for pharmaceutical use should be fundamentally reconsidered.
Supporting Information
- Supporting Information
A sample overview, as well as details on the preparation of spiked essential oil samples, analytics, and calculations, are available as Supporting Information.
Publication History
Received: 16 December 2020
Accepted after revision: 22 June 2021
Article published online:
22 July 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Brown ME. Survivors over six millennia: essential oils. Pharm Hist (Lond) 2014; 44: 13-18
- 2 Feyaerts AF, Luyten W, Van Dijck P. Striking essential oil: tapping into a largely unexplored source for drug discovery. Sci Rep 2020; 10: 2867
- 3 Edris AE. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 2007; 21: 308-323
- 4 Bakkali F, Averbeck S, Verbeck D, Idaomar M. Biological effects of essential oils – A review. Food Chem Toxicol 2008; 46: 446-475
- 5 Reichling J, Schnitzler P, Suschke U, Saller R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties–an overview. Forsch Komplementmed 2009; 16: 79-90
- 6 Angelini P, Tirillini B, Akhtar MS, Dimitriu L, Bricchi E, Bertuzzi G, Venanzoni R. Essential Oil with anticancer Activity: An Overview. In: Akhtar M, Swamy M. eds. Anticancer Plants: Natural Products and biotechnological Implements. Singapore: Springer; 2018: 207-231
- 7 Fitsiou E, Pappa A. Anticancer activity of essential oils and other extracts from aromatic plants grown in Greece. Antioxidants 2019; 8: 290
- 8 Bayala B, Bassole IHN, Scifo R, Gnoula C, Morel L, Lobaccaro JMA, Simpore J. Anticancer activity of essential oils and their chemical components–a review. Am J Cancer Res 2014; 4: 591-607
- 9 Lesgards JF, Baldovini N, Vidal N, Pietri S. Anticancer activities of essential oils constituents and synergy with conventional therapies: a review. Phytother Res 2014; 28: 1423-1446
- 10 Sobral MV, Xavier AL, Lima TC, de Sousa DP. Antitumor activity of monoterpenes found in essential oils. Sci World J 2014; 2014: 953451
- 11 Privitera G, Luca T, Castorina S, Passanisi R, Ruberto G, Napoli E. Anticancer activity of Salvia officinalis essential oil and its principal constituents against hormone-dependent tumour cells. Asian Pac J Trop Biomed 2019; 9: 24-28
- 12 Dahham SS, Hassan LEA, Ahamed MBK, Majid ASA, Majid AMSA, Zulkepli NN. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna). BMC Complement. Altern Med 2016; 16: 326
- 13 Nikolić M, Glamočlija J, Ferreira ICFR, Calhelha RC, Fernandes Â, Marković T, Marković D, Giweli A, Soković M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind Crops Prod 2014; 52: 183-190
- 14 Hensel A, Bauer R, Heinrich M, Spiegler V, Kayser O, Hempel G, Kraft K. Challenges at the time of COVID-19: opportunities and innovations in antivirals from nature. Planta Med 2020; 86: 659-664
- 15 Thomsen J, Röschmann-Doose K, Wittig T, Kraft K. Virucidal and virostatic in vitro activity of ELOM-080 against respiratory pathogens. Phytomedicine Plus 2021; 1: 100035
- 16 da Silva JKR, Figueiredo PLB, Byler KG, Setzer WN. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 infection: an in-silico investigation. Int J Mol Sci 2020; 21: 3426
- 17 Ma L, Yao L. Antiviral effects of plant-derived essential oils and their components: an updated review. Molecules 2020; 25: 2627
- 18 Wani AR, Yadav K, Khursheed A, Rather MA. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb Pathog 2021; 152: 104620
- 19 Asif M, Saleem M, Saadullah M, Yaseen HS, Al Zarzour R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology 2020; 28: 1153-1161
- 20 Nadjib BM. Effective antiviral activity of essential oils and their characteristic terpenes against coronaviruses: an update. J Pharmacol Clin Toxicol 2020; 8: 1138
- 21 Ojah EO. Exploring essential oils as prospective therapy against the ravaging coronavirus (SARS-CoV-2). Iberoam J Med 2020; 02: 322-330
- 22 Patne T, Mahore J, Tokmurke P. Inhalation of essential oils: could be adjuvant therapeutic strategy for COVID-19. Int J Pharm Sci Res 2020; 11: 4095-4103
- 23 Li X, He X, Chen S, Guo X, Bryant MS, Guo L, Manjanatha MG, Zhou T, Witt KL, Mei N. Evaluation of pyrrolizidine alkaloid-induced genotoxicity using metabolically competent TK6 cell lines. Food Chem Toxicol 2020; 145: 111662
- 24 Roeder E. Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 2000; 55: 711-726
- 25 Kempf M, Schreier P, Reinhard A, Beuerle T. Pyrrolizidinalkaloide in Honig und Pollen. J Verbr Lebensm 2010; 5: 393-406
- 26 Wiedenfeld H, Edgar J. Toxicity of pyrrolizidine alkaloids to humans and ruminants. Phytochem Rev 2011; 10: 137-151
- 27 Merz KH, Schrenk D. Interim relative potency factors for the toxicological risk assessment of pyrrolizidine alkaloids in food and herbal medicines. Toxicol Lett 2016; 263: 44-57
- 28 Gao L, Rutz L, Schrenk D. Structure-dependent hepato-cytotoxic potencies of selected pyrrolizidine alkaloids in primary rat hepatocyte culture. Food Chem Toxicol 2020; 135: 110923
- 29 Rutz L, Gao L, Küpper JH, Schrenk D. Structure-dependent genotoxic potencies of selected pyrrolizidine alkaloids in metabolically competent HepG2 cells. Arch Toxicol 2020; 94: 4159-4172
- 30 Glück J, Waizenegger J, Braeuning A, Hessel-Pras S. Pyrrolizidine alkaloids induce cell death in human HepaRG cells in a structure-dependent manner. Int J Mol Sci 2021; 22: 202
- 31 Zheng P, Xu Y, Zhenhui R, Wang Z, Wang S, Xiong J, Zhang H, Jiang H. Toxic prediction of pyrrolizidine alkaloids and structure-dependent induction of apoptosis in HepaRG cells. Oxid Med Cell Longev 2021; 2021: 8822304
- 32 Lester C, Troutman J, Obringer C, Wehmeyer K, Stoffolano P, Karb M, Xu Y, Roe A, Carr G, Blackburn K, Mahony C. Intrinsic relative potency of a series of pyrrolizidine alkaloids characterized by rate and extend of metabolism. Food Chem Toxicol 2019; 131: 110523
- 33 Ning J, Chen L, Strikwold M, Louisse J, Wesseling S, Rietjens IMCM. Use of an in vitro-in silico testing strategy to predict inter-species and inter-ethnic human differences in liver toxicity of the pyrrolizidine alkaloids lasiocarpine and riddelliine. Arch Toxicol 2019; 93: 801-818
- 34 Ning J, Chen L, Rietjens IMCM. Role of toxicokinetics and alternative testing strategies in pyrrolizidine alkaloid toxicity and risk assessment; state-of-the-art and future perspectives. Food Chem Toxicol 2019; 131: 110572
- 35 Enge AM, Kaltner F, Gottschalk C, Braeuning A, Hessel-Pras S. Active transport of hepatotoxic pyrrolizidine alkaloids in HepaRG cells. Int J Mol Sci 2021; 22: 3821
- 36 Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM). Bekanntmachung zur Prüfung des Gehalts an Pyrrolizidinalkaloiden zur Sicherstellung der Qualität und Unbedenklichkeit von Arzneimitteln, die pflanzliche Stoffe bzw. pflanzliche Zubereitungen oder homöopathische Zubereitungen aus pflanzlichen Ausgangsstoffen als Wirkstoffe enthalten. Announcement from 01. March 2016. Accessed April 28, 2021 at: http://www.bfarm.de/SharedDocs/Bekanntmachungen/DE/Arzneimittel/besTherap/bm-besTherap-20160301-pa-pdf.pdf
- 37 Nowak M, Wittke C, Lederer I, Klier B, Kleinwächter M, Selmar D. Interspecific transfer of pyrrolizidine alkaloids: an unconsidered source of contaminations of phytopharmaceuticals and plant derived commodities. Food Chem 2016; 213: 163-168
- 38 Selmar D, Wittke C, Beck-von Wolffersdorff I, Klier B, Lewerenz L, Kleinwächter M, Nowak M. Transfer of pyrrolizidine alkaloids between living plants: a disregarded source of contamination. Environ Pollut 2019; 248: 456-461
- 39 Wiesner J, Reh K, Knöss W. Regulatorische Aspekte zu PA-Kontaminationen in Arzneipflanzen (Regulatory aspects concerning PA contamination in medicinal plants). J Kulturpflanzen 2020; 72: 84-87
- 40 Steinhoff B. Pyrrolizidine alkaloid contamination in herbal medicinal products: limits and occurrence. Food Chem Toxicol 2019; 130: 262-266
- 41 Bundesinstitut für Risikobewertung (BfR). Bestimmung von Pyrrolizidinalkaloiden (PA) in Pflanzenmaterial mittels SPE-LC-MS/MS. Method description BfR-PA-Tee-2.0/2014. Accessed April 28, 2021 at: http://www.bfr.bund.de/cm/343/bestimmung-von-pyrrolizidinalkaloiden.pdf
- 42 Bundesverband der Arzneimittel-Hersteller (BAH) & Bundesverband der Pharmazeutischen Industrie (BPI). Mögliche Kontaminationen mit Pyrrolizidinalkaloiden: Anforderungen an die produktspezifische Dokumentation der Qualitätskontrolle. Recommendations of the associations BAH and BPI from 16. December 2016. Accessed April 28, 2021 at: BAH-Homepage; BPI-Homepage: membernet.bpi.de/bibliothek/alle-downloads/8883.download?cHash=3742927fe8665;b2fea606f7d9999e6d5: http://www.bah-bonn.de/themen/meldung/pyrrolizidinalkaloide-empfehlungen-fuer-die-firmen-zur-umsetzung-der-bfarm-bekanntmachung-vom-1-maerz-2016
- 43 Steinhoff B. Pflanzliche Arzneimittel: Aktuelle Anforderungen an die Prüfung auf Kontaminationen (Herbal medicinal products: current requirements for testing for contamination). Z Phytother 2017; 38: 166-169
- 44 Rassem HHA, Nour AH, Yunus RM. Techniques for extraction of essential oils from plants: a review. Aust J Basic Appl Sci 2016; 10: 117-127
- 45 Burger P, Plainfossé H, Brochet X, Chemat F, Fernandez X. Extraction of natural fragrance ingredients: history overview and future trends. Chem Biodivers 2019; 16: e1900424
- 46 Sadgrove N, Jones G. A contemporary introduction to essential oils: chemistry, bioactivity and prospects for Australian agriculture. Agriculture 2015; 5: 48-102
- 47 Committee on Herbal Medicinal Products (HMPC). Guideline on good agricultural and collection practice (GACP) for starting materials of herbal origin. EMEA/HMPC/246816/2005 from 20. February 2006. Accessed April 28, 2021 at: http://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-agricultural-collection-practice-gacp-starting-materials-herbal-origin_en.pdf
- 48 Kempf M, Heil S, Haßlauer I, Schmidt L, von der Ohe K, Theuring C, Reinhard A, Schreier P, Beuerle T. Pyrrolizidine alkaloids in pollen and pollen products. Mol Nutr Food Res 2010; 54: 292-300
- 49 Kempf M, Reinhard A, Beuerle T. Pyrrolizidine alkaloids (PAs) in honey and pollen – legal regulation of PA levels in food and animal feed required. Mol Nutr Food Res 2010; 54: 158-168
- 50 Committee on Herbal Medicinal Products (HMPC). Public statement on contamination of herbal medicinal products/traditional herbal medicinal products with pyrrolizidine alkaloids. EMA/HPMC/328782/2016 from 31 May 2016. Accessed April 28, 2021 at: http://www.ema.europa.eu/docs/en_GB/document_library/Public_statement/2016/06/WC500208195.pdf
- 51 U.S. Environmental Protection Agency (EPA). Predicted average values of octanol-water partition coefficients (log P) of retrorsine (0.150), retrorsine N-oxide (− 1.01), lycopsamine (0.190) and limonene (4.55) can be found here: Accessed April 28, 2021 at: https://comptox.epa.gov/dashboard/dsstoxdb/results?search=retrorsine, https://comptox.epa.gov/dashboard/dsstoxdb/results?search=retrorsine N-oxide, https://comptox.epa.gov/dashboard/dsstoxdb/results?search=lycopsamine, https://comptox.epa.gov/dashboard/dsstoxdb/results?search=limonene.
- 52 Committee on Herbal Medicinal Products (HMPC). Public statement on the use of herbal medicinal products containing toxic, unsaturated pyrrolizidine alkaloids (PAs) including recommendations regarding contamination of herbal medicinal products with pyrrolizidine alkaloids. EMA/HPMC/893108/2011 Rev. 1 (draft) from 08. July 2020. Accessed April 28, 2021 at: http://www.ema.europa.eu/en/documents/public-statement/draft-public-statement-use-herbal-medicinal-products-containing-toxic-unsaturated-pyrrolizidine_en-0.pdf
- 53 European Medicines Agency (EMEA). ICH Topic Q2 (R1). Note for guidance on validation of analytical procedures: text and methodology. Step 5 (CPMP/ICH/381/95) June 1995. Accessed April 28, 2021 at: http://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf
- 54 [Anonymous] PA/PH/Exp. PA/T (18) 1 ANP, 2.8.26. Contaminant pyrrolizidine alkaloids. Pharmeuropa 32.1 (January 2020). Accessed April 28, 2021 at: http://pharmeuropa.edqm.eu/app/Archives/content/Archives-0/Pharmeuropa3201E.pdf
- 55 [Anonymous] Pesticide residues. European Directorate for the Quality of Medicines & HealthCare. European Pharmacopoeia, 10th Edition (Supplement 10.5). General Chapter 2.8.13. Accessed April 28, 2021 at: https://www.edqm.eu/en
- 56 [Anonymous] European Commission. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. SANTE/12682/2019, 01/01/2020. Accessed April 28, 2021 at: http://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf