CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 390-404
DOI: 10.1055/a-1534-1508
Focus Issue: Supramolecular Optoelectronic Materials
Original Article

Structure–Assembly–Property Relationships of Simple Ditopic Hydrogen-Bonding-Capable π-Conjugated Oligomers

a  Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, 32611, United States
,
a  Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, 32611, United States
,
Lei Li
a  Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, 32611, United States
b  Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, United States
,
Daken J. Starkenburg
c  Department of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, FL, 32611, United States
,
Xueying Zhao
c  Department of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, FL, 32611, United States
,
a  Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, 32611, United States
,
Sara J. Sadovy
c  Department of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, FL, 32611, United States
,
Scott S. Perry
c  Department of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, FL, 32611, United States
,
c  Department of Materials Science and Engineering, University of Florida, PO Box 116400, Gainesville, FL, 32611, United States
,
a  Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, 32611, United States
› Institutsangaben
Funding Information R. K. C. and J. X. are thankful to the National Science Foundation for supporting this research (CHE-1507561 and CHE-1904534). The mass spectrometric data were obtained by the UF Department of Chemistry Mass Spectrometry Research and Education Center supported, in part, by the National Institutes of Health (NIH S10OD021758-01A1).


Abstract

A series of simple ditopic hydrogen-bonding-capable molecules functionalized with 2,4-diamino-1,3,5-triazine (DAT), barbiturate (B), and phthalhydrazide (PH) on both termini of a 2,2′-bithiophene linker were designed and synthesized. The intrinsic electronic structures of the ditopic DAT, PH, and B molecules were investigated with ground-state density functional theory calculations. Their solution absorbance was investigated with UV-vis, where it was found that increasing size of R group substituents on the bithiophene linker resulted in a general blue-shift in solution absorbance maximum. The solid-state optical properties of ditopic DAT and B thin films were evaluated by UV-vis, and it was found that the solid-state absorbance was red-shifted with respect to solution absorbance in all cases. The three DAT molecules were vacuum-thermal-deposited onto Au(111) substrates and the morphologies were examined using scanning tunneling microscopy. (DAT-T)2 was observed to organize into six-membered rosettes on the surface, whereas (DAT-TMe)2 formed linear assemblies before and after thermal annealing. For (DAT-Toct)2 , an irregular arrangement was observed, while (B-TMe)2 showed several co-existent assembly patterns. The work presented here provides fundamental molecular–supramolecular relationships useful for semiconductive materials design based on ditopic hydrogen-bonding-capable building blocks.

Supporting Information

Synthesis and structural characterization details, absorption data and associated Beer–Lambert plots, post-deposition analysis by NMR, TGA data, additional STM data, and computational details complete with coordinates of geometry-optimized structures.


Supporting Information for this article is available online at https://doi.org/10.1055/a-1534-1508.


Supporting Information



Publikationsverlauf

Eingereicht: 24. Mai 2021

Angenommen: 17. Juni 2021

Publikationsdatum:
22. Juni 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Scholz S, Kondakov D, Lüssem B, Leo K. Chem. Rev. 2015; 115: 8449
  • 2 Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev. 2012; 112: 2208
  • 3 Li Y. Acc. Chem. Res. 2012; 45: 723
  • 4 Ostroverkhova O. Chem. Rev. 2016; 116: 13279
  • 5 Hedley GJ, Ruseckas A, Samuel ID. W. Chem. Rev. 2017; 117: 796
  • 6 Bronstein H, Nielsen CB, Schroeder BC, McCulloch I. Nat. Rev. Chem. 2020; 4: 66
  • 7 Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem. Rev. 2016; 116: 7397
  • 8 Dou L, Liu Y, Hong Z, Li G, Yang Y. Chem. Rev. 2015; 115: 12633
  • 9 Du Z, Chen W, Chen Y, Qiao S, Bao X, Wen S, Sun M, Han L, Yang R. J. Mater. Chem. A 2014; 2: 15904
  • 10 Ge C.-W, Mei C.-Y, Ling J, Zhao F.-G, Li H.-J, Liang L, Wang J.-T, Yu J.-C, Shao W, Xie Y.-S, Li W.-S. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 2356
  • 11 Sun M.-J, Zhang X, Zhong Y.-W, Zhan C, Yao J. Inorg. Chem. 2016; 55: 13007
  • 12 Stupp SI, Palmer LC. Chem. Mater. 2014; 26: 507
  • 13 Stebe KJ, Lewandowski E, Ghosh M. Science 2009; 325: 159
  • 14 Li W, Worfolk BJ, Li P, Hauger TC, Harris KD, Buriak JM. J. Mater. Chem. 2012; 22: 11354
  • 15 Grand C, Zajaczkowski W, Deb N, Lo CK, Hernandez JL, Bucknall DG, Müllen K, Pisula W, Reynolds JR. ACS Appl. Mater. Interfaces 2017; 9: 13357
  • 16 Beaujuge PM, Fréchet JM. J. J. Am. Chem. Soc. 2011; 133: 20009
  • 17 Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ. J. Am. Chem. Soc. 2008; 130: 3619
  • 18 Li W, Zhang X, Zhang X, Yao J, Zhan C. ACS Appl. Mater. Interfaces 2017; 9: 1446
  • 19 Zhang T, Han H, Zou Y, Lee Y.-C, Oshima H, Wong K.-T, Holmes RJ. ACS Appl. Mater. Interfaces 2017; 9: 25418
  • 20 Yu R, Yao H, Hong L, Qin Y, Zhu J, Cui Y, Li S, Hou J. Nat. Commun. 2018; 9: 4645
  • 21 Lam KH, Foong TR. B, Ooi ZE, Zhang J, Grimsdale AC, Lam YM. ACS Appl. Mater. Interfaces 2013; 5: 13265
  • 22 Aytun T, Barreda L, Ruiz-Carretero A, Lehrman JA, Stupp SI. Chem. Mater. 2015; 27: 1201
  • 23 Ouchi H, Lin X, Kizaki T, Prabhu DD, Silly F, Kajitani T, Fukushima T, Nakayama K, Yagai S. Chem. Commun. 2016; 52: 7874
  • 24 Schulze BM, Shewmon NT, Zhang J, Watkins DL, Mudrick JP, Cao W, Bou Zerdan R, Quartararo AJ, Ghiviriga I, Xue J, Castellano RK. J. Mater. Chem. A 2014; 2: 1541
  • 25 Shewmon NT, Watkins DL, Galindo JF, Zerdan RB, Chen J, Keum J, Roitberg AE, Xue J, Castellano RK. Adv. Funct. Mater. 2015; 25: 5166
  • 26 Zhao X, Watkins DL, Galindo JF, Shewmon NT, Roitberg AE, Xue J, Castellano RK, Perry SS. Org. Electron. 2015; 19: 61
  • 27 Xiao Z, Duan T, Chen H, Sun K, Lu S. Sol. Energy Mater. Sol. Cells 2018; 182: 1
  • 28 Ghosh T, Panicker JS, Nair VC. Polymers 2017; 9: 112
  • 29 Wang B, Lin R.-B, Zhang Z, Xiang S, Chen B. J. Am. Chem. Soc. 2020; 142: 14399
  • 30 Özen B, Fadaei Tirani F, Schenk K, Lin K.-H, Scopelliti R, Corminboeuf C, Frauenrath H. Chem. Eur. J. 2021; 27: 3348
  • 31 Mayoral MJ, Bilbao N, González-Rodríguez D. ChemistryOpen 2015; 5: 10
  • 32 Schulze BM, Watkins DL, Zhang J, Ghiviriga I, Castellano RK. Org. Biomol. Chem. 2014; 12: 7932
  • 33 Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem. Rev. 2020; 120: 8814
  • 34 Luo J, Wang J.-W, Zhang J.-H, Lai S, Zhong D.-C. CrystEngComm 2018; 20: 5884
  • 35 Maly KE, Dauphin C, Wuest JD. J. Mater. Chem. 2006; 16: 4695
  • 36 Helzy F, Maris T, Wuest JD. J. Org. Chem. 2016; 81: 3076
  • 37 Demers E, Maris T, Wuest JD. Cryst. Growth Des. 2005; 5: 1227
  • 38 Brunet P, Simard M, Wuest JD. J. Am. Chem. Soc. 1997; 119: 2737
  • 39 Deans R, Cooke G, Rotello VM. J. Org. Chem. 1997; 62: 836
  • 40 Miura A, Jonkheijm P, De Feyter S, Schenning AP. H. J, Meijer EW, De Schryver FC. Small 2005; 1: 131
  • 41 Yang W, Yang F, Hu T.-L, King SC, Wang H, Wu H, Zhou W, Li J.-R, Arman HD, Chen B. Cryst. Growth Des. 2016; 16: 5831
  • 42 Hollamby MJ, Aratsu K, Pauw BR, Rogers SE, Smith AJ, Yamauchi M, Lin X, Yagai S. Angew. Chem. Int. Ed. 2016; 55: 9890
  • 43 Prabhu DD, Aratsu K, Yamauchi M, Lin X, Adhikari B, Yagai S. Polym. J. 2017; 49: 189
  • 44 Yagai S, Goto Y, Karatsu T, Kitamura A, Kikkawa Y. Chem. Eur. J. 2011; 17: 13657
  • 45 Yagai S, Goto Y, Lin X, Karatsu T, Kitamura A, Kuzuhara D, Yamada H, Kikkawa Y, Saeki A, Seki S. Angew. Chem. Int. Ed. 2012; 51: 6643
  • 46 Yagai S, Suzuki M, Lin X, Gushiken M, Noguchi T, Karatsu T, Kitamura A, Saeki A, Seki S, Kikkawa Y, Tani Y, Nakayama K. Chem. Eur. J. 2014; 20: 16128
  • 47 Ouchi H, Kizaki T, Lin X, Prabhu DD, Hoshi N, Silly F, Nakayama K.-i, Yagai S. Chem. Lett. 2017; 46: 1102
  • 48 Suárez M, Lehn J.-M, Zimmerman SC, Skoulios A, Heinrich B. J. Am. Chem. Soc. 1998; 120: 9526
  • 49 Kaseyama T, Furumi S, Zhang X, Tanaka K, Takeuchi M. Angew. Chem. Int. Ed. 2011; 50: 3684
  • 50 Mourran A, Ziener U, Möller M, Suarez M, Lehn J.-M. Langmuir 2006; 22: 7579
  • 51 Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, Chen Y. Adv. Mater. 2011; 23: 5387
  • 52 Capodilupo AL, De Marco L, Fabiano E, Giannuzzi R, Scrascia A, Carlucci C, Corrente GA, Cipolla MP, Gigli G, Ciccarella G. J. Mater. Chem. A 2014; 2: 14181
  • 53 Zhuang W, Bolognesi M, Seri M, Henriksson P, Gedefaw D, Kroon R, Jarvid M, Lundin A, Wang E, Muccini M, Andersson MR. Macromolecules 2013; 46: 8488
  • 54 Stagni S, Palazzi A, Brulatti P, Salmi M, Muzzioli S, Zacchini S, Marcaccio M, Paolucci F. Eur. J. Inorg. Chem. 2010; 2010: 4643
  • 55 Speros JC, Martinez H, Paulsen BD, White SP, Bonifas AD, Goff PC, Frisbie CD, Hillmyer MA. Macromolecules 2013; 46: 5184
  • 56 Yamamoto E, Ukigai S, Ito H. Chem. Sci. 2015; 6: 2943
  • 57 Frisch GW. T. M. J, Schlegel HB, Scuseria GE, Robb JR. C. M. A, Scalmani G, Barone V, Mennucci B, Petersson HN. G. A, Caricato M, Li X, Hratchian HP, Izmaylov JB. A. F, Zheng G, Sonnenberg JL, Hada M, Ehara KT. M, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda OK. Y, Nakai H, Vreven T, Montgomery Jr. JA, Peralta FO. J. E, Bearpark M, Heyd JJ, Brothers E, Kudin VN. S. K. N, Keith T, Kobayashi R, Normand J, Raghavachari AR. K, Burant JC, Iyengar SS, Tomasi J, Cossi NR. M, Millam JM, Klene M, Knox JE, Cross JB, Bakken CA. V, Jaramillo J, Gomperts R, Stratmann RE, Yazyev AJ. A. O, Cammi R, Pomelli C, Ochterski JW, Martin KM. R. L, Zakrzewski VG, Voth GA, Salvador JJ. D. P, Dapprich S, Daniels AD, Farkas JB. F. O, Ortiz JV, Cioslowski J, Fox AD. J. Gaussian 09, Revision D.01. Wallingford CT: Gaussian, Inc.; 2013
  • 58 Kale TS, Ardoña HA. M, Ertel A, Tovar JD. Langmuir 2019; 35: 2270
  • 59 Barbarella G, Zambianchi M, Bongini A, Antolini L. Adv. Mater. 1993; 5: 834
  • 60 Fitzner R, Reinold E, Mishra A, Mena-Osteritz E, Ziehlke H, Körner C, Leo K, Riede M, Weil M, Tsaryova O, Weiß A, Uhrich C, Pfeiffer M, Bäuerle P. Adv. Funct. Mater. 2011; 21: 897
  • 61 Grell M, Bradley DD. C, Ungar G, Hill J, Whitehead KS. Macromolecules 1999; 32: 5810
  • 62 Steinberger S, Mishra A, Reinold E, Levichkov J, Uhrich C, Pfeiffer M, Bäuerle P. Chem. Commun. 2011; 47: 1982
  • 63 Zhou N, Guo X, Ortiz RP, Li S, Zhang S, Chang RP. H, Facchetti A, Marks TJ. Adv. Mater. 2012; 24: 2242
  • 64 Lee J.-I, Lee VY, Miller RD. ETRI J. 2002; 24: 409
  • 65 Katsonis N, Xu H, Haak RM, Kudernac T, Tomović Ž, George S, Van der Auweraer M, Schenning AP. H. J, Meijer EW, Feringa BL, De Feyter S. Angew. Chem. Int. Ed. 2008; 47: 4997
  • 66 Cañas-Ventura ME, Aït-Mansour K, Ruffieux P, Rieger R, Müllen K, Brune H, Fasel R. ACS Nano 2011; 5: 457
  • 67 Pandolfi F, Rocco D, Mattiello L. Org. Biomol. Chem. 2019; 17: 3018
  • 68 Shinde VN, Bhuvanesh N, Kumar A, Joshi H. Organometallics 2020; 39: 324
  • 69 Maior RM. S, Hinkelmann K, Eckert H, Wudl F. Macromolecules 1990; 23: 1268
  • 70 J.-A. K. Hong, Ran; Yun, Hui-Jun; Park, Joung-Man; Shin, Sung Chul; Kim, Yun-Hi Bull. Korean Chem. Soc. 2013; 34: 1170
  • 71 Chen LX, Xiao S, Yu L. J. Phys. Chem. B 2006; 110: 11730
  • 72 Rodrigues AD, Marcotte N, Quignard F, Deabate S, Robitzer M, Lerner DA. Spectrochim. Acta, Part A 2020; 227: 117708