Int J Sports Med 2021; 42(14): 1237-1249
DOI: 10.1055/a-1533-1876

The Effects of Physical Exercise on Tumor Vasculature: Systematic Review and Meta-analysis

Mário Esteves
1   Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal
2   Department of Physical Medicine and Rehabilitation, Teaching Hospital of the Fernando Pessoa University, Gondomar, Portugal
Mariana P. Monteiro
3   Department of Anatomy, Universidade do Porto Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
Jose Alberto Duarte
1   Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Porto, Portugal
4   TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
› Author Affiliations


A wealth of evidence supports an association between physical exercise, decreased tumor growth rate, and reduced risk of cancer mortality. In this context, the tumor vascular microenvironment may play a key role in modulating tumor biologic behavior. The present systematic review and meta-analysis aimed to summarize the evidence regarding the effects of physical exercise on tumor vasculature in pre-clinical studies. We performed a computerized research on the PubMed, Scopus, and EBSCO databases to identify pre-clinical studies that evaluated the effect of physical exercise on tumor vascular outcomes. Mean differences were calculated through a random effects model. The present systematic review included 13 studies involving 373 animals. From these, 11 studies evaluated chronic intratumoral vascular adaptations and 2 studies assessed the acute intratumoral vascular adaptations to physical exercise. The chronic intratumoral vascular adaptations resulted in higher tumor microvessel density in 4 studies, increased tumor perfusion in 2 studies, and reduced intratumoral hypoxia in 3 studies. Quantitatively, regular physical exercise induced an increased tumor vascularization of 2.13 [1.07, 3.20] (p<0.0001). The acute intratumoral vascular adaptations included increased vascular conductance and reduced vascular resistance, which improved tumor perfusion and attenuated intratumoral hypoxia. In pre-clinical studies, physical exercise seems to improve tumor vascularization.

Publication History

Received: 19 March 2021

Accepted: 08 June 2021

Article published online:
02 August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Bray F, Ferlay J, Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394-424 doi:10.3322/caac.21492
  • 2 Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol 2020; 11: 940 doi:10.3389/fimmu.2020.00940
  • 3 Esteves M, Monteiro MP, Duarte JA. Role of regular physical exercise in tumor vasculature: favorable modulator of tumor milieu. Int J Sports Med 2021; 42: 389-406 doi:10.1055/a-1308-3476
  • 4 Jing X, Yang F, Shao C. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18: 157 doi:10.1186/s12943-019-1089-9
  • 5 Petrova V, Annicchiarico-Petruzzelli M, Melino G. et al. The hypoxic tumour microenvironment. Oncogenesis 2018; 7: 10 doi:10.1038/s41389-017-0011-9
  • 6 Siemann DW, Horsman MR. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther 2015; 153: 107-124 doi:10.1016/j.pharmthera.2015.06.006
  • 7 Jo Y, Choi N, Kim K. et al. Chemoresistance of cancer cells: Requirements of tumor microenvironment-mimicking in vitro models in anti-cancer drug development. Theranostics 2018; 8: 5259-5275 doi:10.7150/thno.29098
  • 8 Noman MZ, Hasmim M, Messai Y. et al. Hypoxia: A key player in antitumor immune response. A review in the theme: Cellular responses to hypoxia. Am J Physiol Cell Physiol 2015; 309: C569-C579 doi:10.1152/ajpcell.00207.2015
  • 9 Martin JD, Seano G, Jain RK. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu Rev Physiol 2019; 81: 505-534 doi:10.1146/annurev-physiol-020518-114700
  • 10 Goel S, Wong AH, Jain RK. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2012; 2: a006486 doi:10.1101/cshperspect.a006486
  • 11 Mittal K, Ebos J, Rini B. Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond. Semin Oncol 2014; 41: 235-251 doi:10.1053/j.seminoncol.2014.02.007
  • 12 Ebos JM, Lee CR, Kerbel RS. Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin Cancer Res 2009; 15: 5020-5025 doi:10.1158/1078-0432.CCR-09-0095
  • 13 Paez-Ribes M, Allen E, Hudock J. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009; 15: 220-231 doi:10.1016/j.ccr.2009.01.027
  • 14 Multhoff G, Radons J, Vaupel P. Critical role of aberrant angiogenesis in the development of tumor hypoxia and associated radioresistance. Cancers (Basel) 2014; 6: 813-828 doi:10.3390/cancers6020813
  • 15 Moserle L, Jimenez-Valerio G, Casanovas O. Antiangiogenic therapies: Going beyond their limits. Cancer Discov 2014; 4: 31-41 doi:10.1158/2159-8290.CD-13-0199
  • 16 Philip PA. Targeting angiogenesis in pancreatic cancer. Lancet 2008; 371: 2062-2064 doi:10.1016/S0140-6736(08)60770-9
  • 17 Betrian S, Bergeron C, Blay JY. et al. Antiangiogenic effects in patients with progressive desmoplastic small round cell tumor: Data from the French national registry dedicated to the use of off-labeled targeted therapy in sarcoma (OUTC's). Clin Sarcoma Res 2017; 7: 10 doi:10.1186/s13569-017-0076-4
  • 18 McTiernan A, Friedenreich CM, Katzmarzyk PT. et al. Physical activity in cancer prevention and survival: A systematic review. Med Sci Sports Exerc 2019; 51: 1252-1261 doi:10.1249/MSS.0000000000001937
  • 19 Rezende LFM, Sa TH, Markozannes G. et al. Physical activity and cancer: an umbrella review of the literature including 22 major anatomical sites and 770 000 cancer cases. Br J Sports Med 2018; 52: 826-833 doi:10.1136/bjsports-2017-098391
  • 20 Moore SC, Lee IM, Weiderpass E. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med 2016; 176: 816-825 doi:10.1001/jamainternmed.2016.1548
  • 21 Patel AV, Friedenreich CM, Moore SC. et al. American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. Med Sci Sports Exerc 2019; 51: 2391-2402 doi:10.1249/MSS.0000000000002117
  • 22 Eschke RK, Lampit A, Schenk A. et al. Impact of physical exercise on growth and progression of cancer in rodents – a systematic review and meta-analysis. Front Oncol 2019; 9: 35 doi:10.3389/fonc.2019.00035
  • 23 Esteves M, Silva C, Pereira SS. et al. Regular voluntary running inhibits androgen-independent prostate cancer growth in mice. J Phys Act Health 2021; DOI: 10.1123/jpah.2020-0761.
  • 24 Hojman P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans 2017; 45: 905-911 doi:10.1042/BST20160466
  • 25 Hojman P, Gehl J, Christensen JF. et al. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab 2018; 27: 10-21 doi:10.1016/j.cmet.2017.09.015
  • 26 Kesting S, Weeber P, Schonfelder M. et al. Exercise as a potential intervention to modulate cancer outcomes in children and adults?. Front Oncol 2020; 10: 196 doi:10.3389/fonc.2020.00196
  • 27 Ashcraft KA, Warner AB, Jones LW. et al. Exercise as adjunct therapy in cancer. Semin Radiat Oncol 2019; 29: 16-24 doi:10.1016/j.semradonc.2018.10.001
  • 28 Koelwyn GJ, Quail DF, Zhang X. et al. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer 2017; 17: 620-632 doi:10.1038/nrc.2017.78
  • 29 Isanejad A, Alizadeh AM, Amani Shalamzari S. et al. MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. Life Sci 2016; 151: 30-40 doi:10.1016/j.lfs.2016.02.090
  • 30 Buss LA, Ang AD, Hock B. et al. Effect of post-implant exercise on tumour growth rate, perfusion and hypoxia in mice. PLoS One 2020; 15: e0229290 doi:10.1371/journal.pone.0229290
  • 31 Dufresne S, Gueritat J, Chiavassa S. et al. Exercise training improves radiotherapy efficiency in a murine model of prostate cancer. FASEB J 2020; 34: 4984-4996 doi:10.1096/fj.201901728R
  • 32 Moher D, Liberati A, Tetzlaff J. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097 doi:10.1371/journal.pmed.1000097
  • 33 Hooijmans CR, Rovers MM, de Vries RB. et al. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14: 43 doi:10.1186/1471-2288-14-43
  • 34 Schmidt FL, Oh IS, Hayes TL. Fixed- versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results. Br J Math Stat Psychol 2009; 62: 97-128 doi:10.1348/000711007X255327
  • 35 Macleod MR, O'Collins T, Howells DW. et al. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 2004; 35: 1203-1208 doi:10.1161/01.STR.0000125719.25853.20
  • 36 Florez Bedoya CA, Cardoso ACF, Parker N. et al. Exercise during preoperative therapy increases tumor vascularity in pancreatic tumor patients. Sci Rep 2019; 9: 13966 doi:10.1038/s41598-019-49582-3
  • 37 Jones LW, Antonelli J, Masko EM. et al. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer. J Appl Physiol (1985) 2012; 113: 263-272 doi:10.1152/japplphysiol.01575.2011
  • 38 Faustino-Rocha AI, Silva A, Gabriel J. et al. Long-term exercise training as a modulator of mammary cancer vascularization. Biomed Pharmacother 2016; 81: 273-280 doi:10.1016/j.biopha.2016.04.030
  • 39 Garcia E, Becker VG, McCullough DJ. et al. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity. J Appl Physiol (1985) 2016; 121: 15-24 doi:10.1152/japplphysiol.00266.2016
  • 40 Schadler KL, Thomas NJ, Galie PA. et al. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget 2016; 7: 65429-65440 doi:10.18632/oncotarget.11748
  • 41 Betof AS, Lascola CD, Weitzel D. et al. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J Natl Cancer Inst 2015; 107: djv040 doi:10.1093/jnci/djv040
  • 42 McCullough DJ, Nguyen LM, Siemann DW. et al. Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model. J Appl Physiol (1985) 2013; 115: 1846-1854 doi:10.1152/japplphysiol.00949.2013
  • 43 McCullough DJ, Stabley JN, Siemann DW. et al. Modulation of blood flow, hypoxia, and vascular function in orthotopic prostate tumors during exercise. J Natl Cancer Inst 2014; 106: dju036 doi:10.1093/jnci/dju036
  • 44 Morrell MBG, Alvarez-Florez C, Zhang A. et al. Vascular modulation through exercise improves chemotherapy efficacy in Ewing sarcoma. Pediatr Blood Cancer 2019; 66: e27835 doi:10.1002/pbc.27835
  • 45 Jones LW, Viglianti BL, Tashjian JA. et al. Effect of aerobic exercise on tumor physiology in an animal model of human breast cancer. J Appl Physiol (1985) 2010; 108: 343-348 doi:10.1152/japplphysiol.00424.2009
  • 46 Alvarado A, Gil da Costa RM, Faustino-Rocha AI. et al. Effects of exercise training on breast cancer metastasis in a rat model. Int J Exp Pathol 2017; 98: 40-46 doi:10.1111/iep.12225
  • 47 Mancini M, Toker A. NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 2009; 9: 810-820 doi:10.1038/nrc2735
  • 48 Rinne A, Banach K, Blatter LA. Regulation of nuclear factor of activated T cells (NFAT) in vascular endothelial cells. J Mol Cell Cardiol 2009; 47: 400-410 doi:10.1016/j.yjmcc.2009.06.010
  • 49 Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med 2012; 2: a006627 doi:10.1101/cshperspect.a006627
  • 50 Klein D. The tumor vascular endothelium as decision maker in cancer therapy. Front Oncol 2018; 8: 367 doi:10.3389/fonc.2018.00367
  • 51 Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci USA 2013; 110: 18632-18637 doi:10.1073/pnas.1318415110
  • 52 Cartier A, Leigh T, Liu CH. et al. Endothelial sphingosine 1-phosphate receptors promote vascular normalization and antitumor therapy. Proc Natl Acad Sci USA 2020; 117: 3157-3166 doi:10.1073/pnas.1906246117
  • 53 Hughes SK, Wacker BK, Kaneda MM. et al. Fluid shear stress modulates cell migration induced by sphingosine 1-phosphate and vascular endothelial growth factor. Ann Biomed Eng 2005; 33: 1003-1014 doi:10.1007/s10439-005-5756-1
  • 54 Zhao J, Garcia D, Gartung A. et al. Sphingosine-1-phosphate receptor subtype 2 signaling in endothelial senescence-associated functional impairments and inflammation. Curr Atheroscler Rep 2015; 17: 504 doi:10.1007/s11883-015-0504-y
  • 55 Jung B, Obinata H, Galvani S. et al. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 2012; 23: 600-610 doi:10.1016/j.devcel.2012.07.015
  • 56 Blankenbach KV, Schwalm S, Pfeilschifter J. et al. Sphingosine-1-phosphate receptor-2 antagonists: Therapeutic potential and potential risks. Front Pharmacol 2016; 7: 167 doi:10.3389/fphar.2016.00167
  • 57 Schumacher O, Galvao DA, Taaffe DR. et al. Exercise modulation of tumour perfusion and hypoxia to improve radiotherapy response in prostate cancer. Prostate Cancer Prostatic Dis 2021; 24: 1-14 doi:10.1038/s41391-020-0245-z
  • 58 van Kuijk SJ, Yaromina A, Houben R. et al. Prognostic significance of carbonic anhydrase IX expression in cancer patients: a meta-analysis. Front Oncol 2016; 6: 69 doi:10.3389/fonc.2016.00069
  • 59 Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11: 393-410 doi:10.1038/nrc3064
  • 60 Forster MJ, Dubey A, Dawson KM. et al. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 1996; 93: 4765-4769 doi:10.1073/pnas.93.10.4765
  • 61 Justice JN, Carter CS, Beck HJ. et al. Battery of behavioral tests in mice that models age-associated changes in human motor function. Age (Dordr) 2014; 36: 583-592 doi:10.1007/s11357-013-9589-9
  • 62 Shoji H, Takao K, Hattori S. et al. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain 2016; 9: 11 doi:10.1186/s13041-016-0191-9
  • 63 Singhal G, Morgan J, Jawahar MC. et al. Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behav Brain Res 2020; 383: 112501 doi:10.1016/j.bbr.2020.112501
  • 64 Bartling B, Al-Robaiy S, Lehnich H. et al. Sex-related differences in the wheel-running activity of mice decline with increasing age. Exp Gerontol 2017; 87: 139-147 doi:10.1016/j.exger.2016.04.011
  • 65 Fulop T, Kotb R, Fortin CF. et al. Potential role of immunosenescence in cancer development. Ann N Y Acad Sci 2010; 1197: 158-165 doi:10.1111/j.1749-6632.2009.05370.x
  • 66 Wang Q, Zhou W. Roles and molecular mechanisms of physical exercise in cancer prevention and treatment. J Sport Health Sci 2021; 10: 201-210 doi:10.1016/j.jshs.2020.07.008
  • 67 Koteja P, Swallow JG, Carter PA. et al. Energy cost of wheel running in house mice: Implications for coadaptation of locomotion and energy budgets. Physiol Biochem Zool 1999; 72: 238-249 doi:10.1086/316653
  • 68 Lightfoot JT, Turner MJ, Daves M. et al. Genetic influence on daily wheel running activity level. Physiol Genomics 2004; 19: 270-276 doi:10.1152/physiolgenomics.00125.2004
  • 69 Lista P, Straface E, Brunelleschi S. et al. On the role of autophagy in human diseases: A gender perspective. J Cell Mol Med 2011; 15: 1443-1457 doi:10.1111/j.1582-4934.2011.01293.x
  • 70 Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016; 16: 626-638 doi:10.1038/nri.2016.90
  • 71 Cook MB, Dawsey SM, Freedman ND. et al. Sex disparities in cancer incidence by period and age. Cancer Epidemiol Biomarkers Prev 2009; 18: 1174-1182 doi:10.1158/1055-9965.EPI-08-1118
  • 72 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69: 7-34 doi:10.3322/caac.21551
  • 73 Torre LA, Bray F, Siegel RL. et al. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87-108 doi:10.3322/caac.21262
  • 74 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5-29 doi:10.3322/caac.21254
  • 75 Libert C, Dejager L, Pinheiro I. The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 2010; 10: 594-604 doi:10.1038/nri2815
  • 76 Hewagama A, Patel D, Yarlagadda S. et al. Stronger inflammatory/cytotoxic T-cell response in women identified by microarray analysis. Genes Immun 2009; 10: 509-516 doi:10.1038/gene.2009.12
  • 77 Bouman A, Schipper M, Heineman MJ. et al. Gender difference in the non-specific and specific immune response in humans. Am J Reprod Immunol 2004; 52: 19-26 doi:10.1111/j.1600-0897.2004.00177.x
  • 78 Gillum TL, Kuennen MR, Schneider S. et al. A review of sex differences in immune function after aerobic exercise. Exerc Immunol Rev 2011; 17: 104-121
  • 79 Gubbels Bupp MR. Sex, the aging immune system, and chronic disease. Cell Immunol 2015; 294: 102-110 doi:10.1016/j.cellimm.2015.02.002
  • 80 Pedersen L, Idorn M, Olofsson GH. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 2016; 23: 554-562 doi:10.1016/j.cmet.2016.01.011
  • 81 Edwards KM, Burns VE, Ring C. et al. Individual differences in the interleukin-6 response to maximal and submaximal exercise tasks. J Sports Sci 2006; 24: 855-862 doi:10.1080/02640410500245645
  • 82 Rubin JB, Lagas JS, Broestl L. et al. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11: 17 doi:10.1186/s13293-020-00291-x
  • 83 Ashcraft KA, Peace RM, Betof AS. et al. Efficacy and mechanisms of aerobic exercise on cancer initiation, progression, and metastasis: A critical systematic review of in vivo preclinical data. Cancer Res 2016; 76: 4032-4050 doi:10.1158/0008-5472.CAN-16-0887
  • 84 Pedersen L, Christensen JF, Hojman P. Effects of exercise on tumor physiology and metabolism. Cancer J 2015; 21: 111-116 doi:10.1097/PPO.0000000000000096
  • 85 Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017; 168: 670-691 doi:10.1016/j.cell.2016.11.037
  • 86 Oliver AJ, Lau PKH, Unsworth AS. et al. Tissue-dependent tumor microenvironments and their impact on immunotherapy responses. Front Immunol 2018; 9: 70 doi:10.3389/fimmu.2018.00070
  • 87 Choudhury A, Moniaux N, Ulrich AB. et al. MUC4 mucin expression in human pancreatic tumours is affected by organ environment: the possible role of TGFbeta2. Br J Cancer 2004; 90: 657-664 doi:10.1038/sj.bjc.6601604
  • 88 Hoover M, Adamian Y, Brown M. et al. A novel method for RNA extraction from FFPE samples reveals significant differences in biomarker expression between orthotopic and subcutaneous pancreatic cancer patient-derived xenografts. Oncotarget 2017; 8: 5885-5894 doi:10.18632/oncotarget.11809
  • 89 Zhan B, Wen S, Lu J. et al. Identification and causes of metabonomic difference between orthotopic and subcutaneous xenograft of pancreatic cancer. Oncotarget 2017; 8: 61264-61281 doi:10.18632/oncotarget.18057
  • 90 Zhao X, Li L, Starr TK. et al. Tumor location impacts immune response in mouse models of colon cancer. Oncotarget 2017; 8: 54775-54787 doi:10.18632/oncotarget.18423
  • 91 Brand M, Laban S, Theodoraki MN. et al. Characterization and differentiation of the tumor microenvironment (TME) of orthotopic and subcutaneously grown head and neck squamous cell carcinoma (HNSCC) in immunocompetent mice. Int J Mol Sci 2020; 22: 247 doi:10.3390/ijms22010247
  • 92 Wettersten HI, Ganti S, Weiss RH. Metabolomic profiling of tumor-bearing mice. Methods Enzymol 2014; 543: 275-296 doi:10.1016/B978-0-12-801329-8.00014-3
  • 93 Tian H, Lyu Y, Yang YG. et al. Humanized rodent models for cancer research. Front Oncol 2020; 10: 1696 doi:10.3389/fonc.2020.01696
  • 94 Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118-130 doi:10.1038/nri2017
  • 95 Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 1991; 9: 323-350 doi:10.1146/annurev.iy.09.040191.001543
  • 96 Piercy KL, Troiano RP, Ballard RM. et al. The physical activity guidelines for Americans. JAMA 2018; 320: 2020-2028 doi:10.1001/jama.2018.14854
  • 97 Pollan M, Casla-Barrio S, Alfaro J. et al. Exercise and cancer: a position statement from the Spanish Society of Medical Oncology. Clin Transl Oncol 2020; 22: 1710-1729 doi:10.1007/s12094-020-02312-y
  • 98 Cormie P, Zopf EM, Zhang X. et al. The impact of exercise on cancer mortality, recurrence, and treatment-related adverse effects. Epidemiol Rev 2017; 39: 71-92 doi:10.1093/epirev/mxx007
  • 99 Kruger K, Lechtermann A, Fobker M. et al. Exercise-induced redistribution of T lymphocytes is regulated by adrenergic mechanisms. Brain Behav Immun 2008; 22: 324-338 doi:10.1016/j.bbi.2007.08.008
  • 100 Benschop RJ, Nijkamp FP, Ballieux RE. et al. The effects of beta-adrenoceptor stimulation on adhesion of human natural killer cells to cultured endothelium. Br J Pharmacol 1994; 113: 1311-1316 doi:10.1111/j.1476-5381.1994.tb17141.x
  • 101 Dimitrov S, Lange T, Born J. Selective mobilization of cytotoxic leukocytes by epinephrine. J Immunol 2010; 184: 503-511 doi:10.4049/jimmunol.0902189
  • 102 Campbell JP, Riddell NE, Burns VE. et al. Acute exercise mobilises CD8+ T lymphocytes exhibiting an effector-memory phenotype. Brain Behav Immun 2009; 23: 767-775 doi:10.1016/j.bbi.2009.02.011
  • 103 Turner JE, Spielmann G, Wadley AJ. et al. Exercise-induced B cell mobilisation: preliminary evidence for an influx of immature cells into the bloodstream. Physiol Behav 2016; 164: 376-382 doi:10.1016/j.physbeh.2016.06.023
  • 104 Kruger K, Alack K, Ringseis R. et al. Apoptosis of T-cell subsets after acute high-intensity interval exercise. Med Sci Sports Exerc 2016; 48: 2021-2029 doi:10.1249/MSS.0000000000000979
  • 105 Adams GR, Zaldivar FP, Nance DM. et al. Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle. Brain Behav Immun 2011; 25: 658-666 doi:10.1016/j.bbi.2011.01.002
  • 106 Sitlinger A, Brander DM, Bartlett DB. Impact of exercise on the immune system and outcomes in hematologic malignancies. Blood Adv 2020; 4: 1801-1811 doi:10.1182/bloodadvances.2019001317
  • 107 Idorn M, Hojman P. Exercise-dependent regulation of NK cells in cancer protection. Trends Mol Med 2016; 22: 565-577 doi:10.1016/j.molmed.2016.05.007
  • 108 Vaupel P. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 2008; 13: 21-26 doi:10.1634/theoncologist.13-S3-21
  • 109 Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 1974; 54: 75-159 doi:10.1152/physrev.1974.54.1.75
  • 110 Smeda M, Przyborowski K, Proniewski B. et al. Breast cancer pulmonary metastasis is increased in mice undertaking spontaneous physical training in the running wheel; a call for revising beneficial effects of exercise on cancer progression. Am J Cancer Res 2017; 7: 1926-1936
  • 111 Goh J, Ladiges W. Voluntary wheel running in mice. Curr Protoc Mouse Biol 2015; 5: 283-290 doi:10.1002/9780470942390.mo140295
  • 112 Brown DA, Johnson MS, Armstrong CJ. et al. Short-term treadmill running in the rat: what kind of stressor is it?. J Appl Physiol (1985) 2007; 103: 1979-1985 doi:10.1152/japplphysiol.00706.2007
  • 113 Ader R, Cohen N, Felten D. Psychoneuroimmunology: Interactions between the nervous system and the immune system. Lancet 1995; 345: 99-103 doi:10.1016/s0140-6736(95)90066-7
  • 114 Lewis DI, Coote JH. Excitation and inhibition of rat sympathetic preganglionic neurones by catecholamines. Brain Res 1990; 530: 229-234 doi:10.1016/0006-8993(90)91287-q
  • 115 Unnerstall JR, Kopajtic TA, Kuhar MJ. Distribution of alpha 2 agonist binding sites in the rat and human central nervous system: Analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res 1984; 319: 69-101 doi:10.1016/0165-0173(84)90030-4
  • 116 Won E, Kim YK. Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr Neuropharmacol 2016; 14: 665-673 doi:10.2174/1570159x14666151208113006
  • 117 Goel S, Duda DG, Xu L. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91: 1071-1121 doi:10.1152/physrev.00038.2010
  • 118 Joisten N, Schenk A, Zimmer P. Talking about physical "activity" or "inactivity"? The need of accurate activity controlling in exercise studies in rodents. Front Physiol 2020; 11: 611193 doi:10.3389/fphys.2020.611193
  • 119 Cox KL, Cyarto EV, Etherton-Beer C. et al. A randomized controlled trial of physical activity with individual goal-setting and volunteer mentors to overcome sedentary lifestyle in older adults at risk of cognitive decline: the INDIGO trial protocol. BMC Geriatr 2017; 17: 215 doi:10.1186/s12877-017-0617-y
  • 120 Arikawa AY, O'Dougherty M, Kaufman BC. et al. Women in Steady Exercise Research (WISER): study design and methods. Contemp Clin Trials 2010; 31: 457-465 doi:10.1016/j.cct.2010.05.008
  • 121 Amaro-Gahete FJ, De-la OA, Jurado-Fasoli L. et al. Metabolic rate in sedentary adults, following different exercise training interventions: The FIT-AGEING randomized controlled trial. Clin Nutr 2020; 39: 3230-3240 doi:10.1016/j.clnu.2020.02.001
  • 122 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 doi:10.1055/a-1015-3123