CC BY-NC-ND 4.0 · Organic Materials 2021; 03(03): 405-416
DOI: 10.1055/a-1530-0476
Focus Issue: Supramolecular Optoelectronic Materials
Short Review

Core-Substituted Naphthalene-Diimides (cNDI) and Related Derivatives: Versatile Scaffold for Supramolecular Assembly and Functional Materials

a   School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja SC Mallick Road, Jadavpur, Kolkata 700032, India
,
a   School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja SC Mallick Road, Jadavpur, Kolkata 700032, India
› Author Affiliations
Funding Information S.G. thanks Science and Engineering Research Board (Project No: CRG/2020/002395), India for funding.


Abstract

Naphthalene-diimide (NDI)-derived building blocks have been explored extensively for supramolecular assembly as they exhibit attractive photophysical properties, suitable for applications in organic optoelectronics. Core-substituted derivatives of the NDI chromophore (cNDI) differ significantly from the parent NDI dye in terms of optical and redox properties. Adequate molecular engineering opportunities and substitution-dependent tunable optoelectronic properties make cNDI derivatives highly promising candidates for supramolecular assembly and functional materials. This short review discusses recent development in the area of functional supramolecular assemblies based on cNDIs and related molecules.

Table of contents

1. Introduction

2. General Supramolecular Assemblies of cNDI Derivatives

3. cNDI-Based Chiral Supramolecular Assemblies and Functional Materials

4. Controlled Supramolecular Polymerization with cNDI Derivatives

5. Dimeric Naphthalimide-Based Building Blocks

6. Conclusions and Outlook



Publication History

Received: 14 May 2021

Accepted: 11 June 2021

Accepted Manuscript online:
16 June 2021

Article published online:
25 August 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Aida T, Meijer EW, Stupp SI. Science 2012; 335: 813
    • 1b Hoeben FJ. M, Jonkheijm P, Meijer EW, Schenning AP. H. J. Chem. Rev. 2005; 105: 1491
    • 1c Babu SS, Praveen VK, Ajayaghosh A. Chem. Rev. 2014; 114: 1973
    • 1d Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem. Rev. 2016; 116: 962
    • 1e Das A, Ghosh S. Angew. Chem. Int. Ed. 2014; 53: 2038
    • 1f Yagai S, Kitamoto Y, Datta S, Adhikari B. Acc. Chem. Res. 2019; 52: 1325
    • 1g Rest C, Kandanelli R, Fernández G. Chem. Soc. Rev. 2015; 44: 2543
    • 1h Kumar M, Rao KV, George SJ. Phys. Chem. Chem. Phys. 2014; 16: 1300
    • 1i Dorca Y, Mattern J, Fernández G, Sánchez L. Isr. J. Chem. 2019; 59: 869
    • 2a Dan Pantos G. Naphthalenediimide and its Congeners: From Molecules to Materials. Royal Society of Chemistry; Cambridge: 2017
    • 2b Al Kobaisi M, Bhosale SV, Latham K, Raynor AM, Bhosale SV. Chem. Rev. 2016; 116: 11685
    • 2c Das A, Ghosh S. Chem. Commun. 2016; 52: 6860
  • 3 Avlasevich Y, Li C, Müllen K. J. Mater. Chem. 2010; 20: 3814
    • 4a Würthner F, Stolte M. Chem. Commun. 2011; 47: 5109
    • 4b Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR. Adv. Mater. 2011; 23: 268
    • 4c Jones BA, Facchetti A, Wasielewski MR, Marks TJ. J. Am. Chem. Soc. 2007; 129: 15259
  • 5 Vollmann H, Becker H, Corell M, Streeck H. Liebigs Ann. Chem. 1937; 531: 1
  • 6 Thalacker C, Miura A, De Feyter S, De Schryver FC, Würthner F. Org. Biomol. Chem. 2005; 3: 414
    • 7a Thalacker C, Röger C, Würthner F. J. Org. Chem. 2006; 71: 8098
    • 7b Shukla J, Mukhopadhyay P. Eur. J. Org. Chem. 2019; 7770
    • 7c Gao X, Qiu W, Yang X, Liu Y, Wang Y, Zhang H, Qi T, Liu Y, Lu K, Du C, Shuai Z, Yu G, Zhu D. Org. Lett. 2007; 9: 3917
    • 7d Kumar Y, Kumar S, Mandal K, Mukhopadhyay P. Angew. Chem. Int. Ed. 2018; 57: 16318
  • 8 Insuasty A, Maniam S, Langford SJ. Chemistry 2019; 25: 7058
    • 9a Sakai N, Mareda J, Vauthey E, Matile S. Chem. Commun. 2010; 46: 4225
    • 9b Kishore RS. K, Kel O, Banerji N, Emery D, Bollot G, Mareda J, Gomez-Casado A, Jonkheijm P, Huskens J, Maroni P, Borkovec M, Vauthey E, Sakai N, Matile S. J. Am. Chem. Soc. 2009; 131: 11106
  • 10 Mas-Torrent M, Rovira C. Chem. Rev. 2011; 111: 4833
    • 11a Andric G, Boas JF, Bond AM, Fallon GD, Ghiggino KP, Hogan CF, Hutchison JA, Lee MA.-P, Langford SJ, Pilbrow JR, Troup GJ, Woodward CP. Aust. J. Chem. 2004; 57: 1011
    • 11b Röger C, Würthner F. J. Org. Chem. 2007; 72: 8070
    • 11c Röger C, Ahmed S, Würthner F. Synthesis 2007; 12: 1872
    • 11d Bhosale SV, Bhosale SV, Bhargava SK. Org. Biomol. Chem. 2012; 10: 6455
    • 12a Facchetti A. Chem. Mater. 2011; 23: 733
    • 12b Guo X, Kim FS, Seger MJ, Jenekhe SA, Watson MD. Chem. Mater. 2012; 24: 1434
  • 13 Shokouhi Mehr H, Romano NC, Altamimi R, Modarelli JM, Modarelli DA. Dalton Trans. 2015; 44: 3176
  • 14 Sarkar A, Kölsch JC, Berač CM, Venugopal A, Sasmal R, Otter R, Besenius P, George SJ. ChemistryOpen 2020; 9: 346
  • 15 Kar H, Gehrig DW, Allampally NK, Fernández G, Laquai F, Ghosh S. Chem. Sci. 2016; 7: 1115
  • 16 Kar H, Ghosh S. Chem. Commun. 2016; 52: 8818
  • 17 Mukherjee A, Sakurai T, Seki S, Ghosh S. Langmuir 2020; 36: 13096
  • 18 Dhiman S, Ghosh R, George SJ. ChemSystemsChem 2020; 2: e1900042
  • 19 Keene F. Chirality in Supramolecular Assemblies: Causes and Consequences. Wiley; Chichester: 2016
  • 20 Sarkar A, Dhiman S, Chalishazar A, George SJ. Angew. Chem. Int. Ed. 2017; 56: 13767
  • 21 Sethy R, Kumar J, Métivier R, Louis M, Nakatani K, Mecheri NM. T, Subhakumari A, Thomas KG, Kawai T, Nakashima T. Angew. Chem. Int. Ed. 2017; 56: 15053
  • 22 Yonezawa S, Sethy R, Fukuhara G, Kawai T, Nakashima T. Chem. Commun. 2019; 55: 5793
  • 23 Sethy R, Métivier R, Brosseau A, Kawai T, Nakashima T. J. Phys. Chem. Lett. 2018; 9: 4516
  • 24 Mukherjee A, Ghosh S. Chemistry 2020; 26: 12874
  • 25 Mukherjee A, Pal DS, Kar H, Ghosh S. Polym. Chem. 2020; 11: 7481
    • 26a Mukhopadhyay RD, Ajayaghosh A. Science 2015; 349: 241
    • 26b Sorrenti A, Leira-Iglesias J, Markvoort AJ, de Greef TF. A, Hermans TM. Chem. Soc. Rev. 2017; 46: 5476
    • 26c Hartlieb M, Mansfield ED. H, Perrier S. Polym. Chem. 2020; 11: 1083
    • 26d Matern J, Dorca Y, Sánchez L, Fernández G. Angew. Chem. Int. Ed. 2019; 58: 16730
    • 26e Wehner M, Würthner F. Nat. Rev. Chem. 2020; 4: 38
    • 26f Ghosh G, Dey P, Ghosh S. Chem. Commun. 2020; 56: 6757
    • 26g Weyandt E, Mabesoone MF. J, de Windt LN. J, Meijer EW, Palmans AR. A, Vantomme G. Org. Mater. 2020; 2: 129
    • 27a Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M. Nat. Chem. 2014; 6: 188
    • 27b Ogi S, Stepanenko V, Thein J, Würthner F. J. Am. Chem. Soc. 2016; 138: 670
    • 27c Greciano EE, Matarranz B, Sánchez L. Angew. Chem. Int. Ed. 2018; 57: 4697
    • 27d Jarrett-Wilkins C, He X, Symons HE, Harniman RL, Faul CF. J, Manners I. Chemistry 2018; 24: 15556
    • 27e Jung SH, Bochicchio D, Pavan GM, Takeuchi M, Sugiyasu K. J. Am. Chem. Soc. 2018; 140: 10570
    • 27f Ogi S, Matsumoto K, Yamaguchi S. Angew. Chem. Int. Ed. 2018; 57: 2339
    • 27g Chakraborty A, Ghosh G, Pal DS, Varghese S, Ghosh S. Chem. Sci. 2019; 10: 7345
    • 27h Wehner M, Röhr MI. S, Stepanenko V, Würthner F. Nat. Commun. 2020; 11: 5460
    • 27i Greciano EE, Calbo J, Ortí E, Sánchez L. Angew. Chem. Int. Ed. 2020; 59: 17517
    • 27j Matern J, Bäumer N, Fernández G. J. Am. Chem. Soc. 2021; 143: 7164
  • 28 Kar H, Gehrig DW, Laquai F, Ghosh S. Nanoscale 2015; 7: 6729
  • 29 Kar H, Ghosh G, Ghosh S. Chemistry 2017; 23: 10536
  • 30 Ghosh G, Ghosh S. Chem. Commun. 2018; 54: 5720
  • 31 Sarkar A, Sasmal R, Empereur-Mot C, Bochicchio D, Kompella SV. K, Sharma K, Dhiman S, Sundaram B, Agasti SS, Pavan GM, George SJ. J. Am. Chem. Soc. 2020; 142: 7606
  • 32 Sarkar A, Behera T, Sasmal R, Capelli R, Empereur-Mot C, Mahato J, Agasti SS, Pavan GM, Chowdhury A, George SJ. J. Am. Chem. Soc. 2020; 142: 11528
    • 33a Poddar M, Sivakumar G, Misra R. J. Mater. Chem. C 2019; 7: 14798
    • 33b Meher N, Iyer PK. Nanoscale 2019; 11: 13233
    • 33c Langdon-Jones EE, Lloyd D, Hayes AJ, Wainwright SD, Mottram HJ, Coles SJ, Horton PN, Pope SJ. A. Inorg. Chem. 2015; 54: 6606
    • 33d Greiner R, Schlücker T, Zgela D, Langhals H. J. Mater. Chem. C 2016; 4: 11244
    • 33e Das A, Maity B, Koley D, Ghosh S. Chem. Commun. 2013; 49: 5757
    • 34a Ghosh S, Pramanik B, Das D. ChemNanoMat 2018; 4: 867
    • 34b Balachandra C, Govindaraju T. J. Org. Chem. 2020; 85: 1525
    • 34c Jamadar A, Karan CK, Roy L, Das A. Langmuir 2020; 36: 3089
  • 35 Chakraborty S, Varghese S, Ghosh S. Chemistry 2019; 25: 16725
  • 36 Dhbaibi K, Favereau L, Srebro-Hooper M, Quinton C, Vanthuyne N, Arrico L, Roisnel T, Jamoussi B, Poriel C, Cabanetos C, Autschbach J, Crassous J. Chem. Sci. 2020; 11: 567
  • 37 Tajima K, Fukui N, Shinokubo H. Org. Lett. 2019; 21: 9516
    • 38a Jones AL, Gish MK, Zeman IV CJ, Papanikolas JM, Schanze KS. J. Phys. Chem. A 2017; 121: 9579
    • 38b El-Khouly ME, Moiseev AG, van der Est A, Fukuzumi S. ChemPhysChem 2012; 13: 1191
    • 38c Mishra R, Sujesh S, Archana VS, Kaushik A, Gupta G, Singhal R, Sharma GD, Sankar J. Eur. J. Org. Chem. 2020; 1603
    • 38d Rundel K, Maniam S, Deshmukh K, Gann E, Prasad SK. K, Hodgkiss JM, Langford SJ, McNeill CR. J. Mater. Chem. A 2017; 5: 12266
    • 38e Kim R, Amegadze PS. K, Kang I, Yun H.-J, Noh Y.-Y, Kwon S.-K, Kim Y.-H. Adv. Funct. Mater. 2013; 23: 5719
    • 38f Guo X, Kim FS, Seger MJ, Jenekhe SA, Watson MD. Chem. Mater. 2012; 24: 1434
    • 38g Frischmann PD, Mahata K, Würthner F. Chem. Soc. Rev. 2013; 42: 1847
    • 39a Doria F, Folini M, Grande V, Cimino-Reale G, Zaffaroni N, Freccero M. Org. Biomol. Chem. 2015; 13: 570
    • 39b Yildiz U, Coban B. Appl. Biochem. Biotechnol. 2018; 186: 547
    • 39c Xu J.-H, Hou Y.-M, Ma Q.-J, Wu X.-F, Wei X.-J. Spectrochim. Acta, Part A 2013; 112: 116
    • 39d Yuan Y, Xiao Z, Yang B, Huang J. J. Mater. Chem. A 2014; 2: 6027
    • 39e Shi K, Zhang F, Di C.-A, Yan T.-W, Zou Y, Zhou X, Zhu D, Wang J.-Y, Pei J. J. Am. Chem. Soc. 2015; 137: 6979
    • 39f Mann JL, Yu AC, Agmon G, Appel EA. Biomater. Sci. 2017; 6: 10
    • 39g Webber MJ, Appel EA, Meijer EW, Langer R. Nat. Mater. 2016; 15: 13
    • 39h Zhao X, Liu J, Fan J, Chao H, Peng X. Chem. Soc. Rev. 2021; 50: 4185
    • 40a Tan L, Guo Y, Yang Y, Zhang G, Zhang D, Yu G, Xu W, Liu Y. Chem. Sci. 2012; 3: 2530
    • 40b Luo H, Cai Z, Tan L, Guo Y, Yang G, Liu Z, Zhang G, Zhang D, Xu W, Liu Y. J. Mater. Chem. C 2013; 1: 2688
    • 40c Zhao Y, Guo Y, Liu Y. Adv. Mater. 2013; 25: 5372
    • 40d Stalder R, Puniredd SR, Hansen MR, Koldemir U, Grand C, Zajaczkowski W, Müllen K, Pisula W, Reynolds JR. Chem. Mater. 2016; 28: 1286
    • 40e Riaño Carnerero A, López Espejo G, Mancheño Real MJ, Eckstein B, González-Cano RC, Melkonyan FS, Facchetti A, Marks TJ, Casado J, López Navarrete JT, Segura JL, Ponce Ortiz R. J. Mater. Chem. C 2017; 5: 9439
    • 40f Lin Z, Chen L, Xu Q, Shao G, Zeng Z, Wu D, Xia J. Org. Lett. 2020; 22: 2553