Hamostaseologie 2021; 41(06): 489-501
DOI: 10.1055/a-1528-0499
Review Article

Mechanism, Functions, and Diagnostic Relevance of FXII Activation by Foreign Surfaces

Sandra Konrath
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Reiner K. Mailer
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
Thomas Renné
1   Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
› Author Affiliations
Funding/Acknowledgment T.R. acknowledges the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for grants A11/SFB 877, B8/SFB 841, and P6/KFO 306.

Abstract

Factor XII (FXII) is a serine protease zymogen produced by hepatocytes and secreted into plasma. The highly glycosylated coagulation protein consists of six domains and a proline-rich region that regulate activation and function. Activation of FXII results from a conformational change induced by binding (“contact”) with negatively charged surfaces. The activated serine protease FXIIa drives both the proinflammatory kallikrein–kinin pathway and the procoagulant intrinsic coagulation cascade, respectively. Deficiency in FXII is associated with a prolonged activated partial thromboplastin time (aPTT) but not with an increased bleeding tendency. However, genetic or pharmacological deficiency impairs both arterial and venous thrombosis in experimental models. This review summarizes current knowledge of FXII structure, mechanisms of FXII contact activation, and the importance of FXII for diagnostic coagulation testing and thrombosis.

Zusammenfassung

Faktor XII (FXII) ist das Zymogen der Serinprotease FXIIa, wird von Hepatozyten produziert und ins Plasma sekretiert. Das Plasmaprotein besteht aus sechs Domänen sowie einer Prolin-reichen Region und ist stark glykosyliert. Die Aktivierung von FXII erfolgt durch eine Konformationsänderung, die durch die Bindung (den „Kontakt“) mit negativ geladenen Oberflächen hervorgerufen wird. In der Folge aktiviert FXIIa sowohl das proinflammatorische Kallikrein-Kinin-System, welches Bradykinin produziert, als auch die intrinsische Gerinnungskaskade. Eine FXII-Defizienz oder Dysfunktionalität ist mit einer verzögerten aktivierten partiellen Thromboplastinzeit (aPTT) assoziiert, nicht aber mit einer erhöhten Blutungsneigung. Dennoch zeigen experimentelle Modelle, dass FXII essentiell für die Bildung arterieller und venöser, Gefäß-verschließender Thrombosen ist. Diese Übersichtsarbeit fasst das aktuelle Wissen über die Struktur von FXII, den Mechanismus der FXII-Kontaktaktivierung und die Bedeutung von FXII für diagnostische Gerinnungstests zusammen.



Publication History

Received: 17 January 2021

Accepted: 11 June 2021

Article published online:
30 September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Long AT, Kenne E, Jung R, Fuchs TA, Renné T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14 (03) 427-437
  • 2 Renné T, Stavrou EX. Roles of factor XII in innate immunity. Front Immunol 2019; 10: 2011
  • 3 Schmaier AH, Emsley J, Feener EP. et al. Nomenclature of factor XI and the contact system. J Thromb Haemost 2019; 17 (12) 2216-2219
  • 4 Renné T, Schmaier AH, Nickel KF, Blombäck M, Maas C. In vivo roles of factor XII. Blood 2012; 120 (22) 4296-4303
  • 5 Renné T, Pozgajová M, Grüner S. et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202 (02) 271-281
  • 6 Grover SP, Olson TM, Cooley BC, Mackman N. Model-dependent contributions of FXII and FXI to venous thrombosis in mice. J Thromb Haemost 2020; 18 (11) 2899-2909
  • 7 Kleinschnitz C, Stoll G, Bendszus M. et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 2006; 203 (03) 513-518
  • 8 Müller F, Mutch NJ, Schenk WA. et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (06) 1143-1156
  • 9 Nickel KF, Ronquist G, Langer F. et al. The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood 2015; 126 (11) 1379-1389
  • 10 Zilberman-Rudenko J, Reitsma SE, Puy C. et al. Factor XII activation promotes platelet consumption in the presence of bacterial-type long-chain polyphosphate in vitro and in vivo. Arterioscler Thromb Vasc Biol 2018; 38 (08) 1748-1760
  • 11 Larsson M, Rayzman V, Nolte MW. et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med 2014; 6 (222) 222ra17
  • 12 Matafonov A, Leung PY, Gailani AE. et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood 2014; 123 (11) 1739-1746
  • 13 Davoine C, Bouckaert C, Fillet M, Pochet L. Factor XII/XIIa inhibitors: their discovery, development, and potential indications. Eur J Med Chem 2020; 208: 112753
  • 14 Kenne E, Nickel KF, Long AT. et al. Factor XII: a novel target for safe prevention of thrombosis and inflammation. J Intern Med 2015; 278 (06) 571-585
  • 15 Björkqvist J, Jämsä A, Renné T. Plasma kallikrein: the bradykinin-producing enzyme. Thromb Haemost 2013; 110 (03) 399-407
  • 16 Ikeda Y, Hayashi I, Kamoshita E. et al. Host stromal bradykinin B2 receptor signaling facilitates tumor-associated angiogenesis and tumor growth. Cancer Res 2004; 64 (15) 5178-5185
  • 17 Renné T, Schuh K, Müller-Esterl W. Local bradykinin formation is controlled by glycosaminoglycans. J Immunol 2005; 175 (05) 3377-3385
  • 18 Benz PM, Blume C, Moebius J. et al. Cytoskeleton assembly at endothelial cell-cell contacts is regulated by alphaII-spectrin-VASP complexes. J Cell Biol 2008; 180 (01) 205-219
  • 19 Benz PM, Blume C, Seifert S. et al. Differential VASP phosphorylation controls remodeling of the actin cytoskeleton. J Cell Sci 2009; 122 (Pt 21): 3954-3965
  • 20 Anton KA, Sinclair J, Ohoka A. et al. PKA-regulated VASP phosphorylation promotes extrusion of transformed cells from the epithelium. J Cell Sci 2014; 127 (Pt 16): 3425-3433
  • 21 Björkqvist J, Sala-Cunill A, Renné T. Hereditary angioedema: a bradykinin-mediated swelling disorder. Thromb Haemost 2013; 109 (03) 368-374
  • 22 Maas C, Oschatz C, Renné T. The plasma contact system 2.0. Semin Thromb Hemost 2011; 37 (04) 375-381
  • 23 Oschatz C, Maas C, Lecher B. et al. Mast cells increase vascular permeability by heparin-initiated bradykinin formation in vivo. Immunity 2011; 34 (02) 258-268
  • 24 Stavrou EX, Fang C, Bane KL. et al. Factor XII and uPAR upregulate neutrophil functions to influence wound healing. J Clin Invest 2018; 128 (03) 944-959
  • 25 Saito H, Ratnoff OD, Pensky J. Radioimmunoassay of human Hageman factor (factor XII). J Lab Clin Med 1976; 88 (03) 506-514
  • 26 Saito H, Ishihara T, Suzuki H, Watanabe T. Production and characterization of a murine monoclonal antibody against a heavy chain of Hageman factor (factor XII). Blood 1985; 65 (05) 1263-1268
  • 27 Clarke BJ, Côté HC, Cool DE. et al. Mapping of a putative surface-binding site of human coagulation factor XII. J Biol Chem 1989; 264 (19) 11497-11502
  • 28 Citarella F, Fedele G, Roem D, Fantoni A, Hack CE. The second exon-encoded factor XII region is involved in the interaction of factor XII with factor XI and does not contribute to the binding site for negatively charged surfaces. Blood 1998; 92 (11) 4198-4206
  • 29 Pixley RA, Stumpo LG, Birkmeyer K, Silver L, Colman RW. A monoclonal antibody recognizing an icosapeptide sequence in the heavy chain of human factor XII inhibits surface-catalyzed activation. J Biol Chem 1987; 262 (21) 10140-10145
  • 30 Citarella F, te Velthuis H, Helmer-Citterich M, Hack CE. Identification of a putative binding site for negatively charged surfaces in the fibronectin type II domain of human factor XII--an immunochemical and homology modeling approach. Thromb Haemost 2000; 84 (06) 1057-1065
  • 31 Citarella F, Aiuti A, La Porta C. et al. Control of human coagulation by recombinant serine proteases. Blood clotting is activated by recombinant factor XII deleted of five regulatory domains. Eur J Biochem 1992; 208 (01) 23-30
  • 32 Citarella F, Ravon DM, Pascucci B, Felici A, Fantoni A, Hack CE. Structure/function analysis of human factor XII using recombinant deletion mutants. Evidence for an additional region involved in the binding to negatively charged surfaces. Eur J Biochem 1996; 238 (01) 240-249
  • 33 Clark CC, Hofman ZLM, Sanrattana W, den Braven L, de Maat S, Maas C. The fibronectin type II domain of factor XII ensures zymogen quiescence. Thromb Haemost 2020; 120 (03) 400-411
  • 34 Hofman ZLM, Clark CC, Sanrattana W. et al. A mutation in the kringle domain of human factor XII that causes autoinflammation, disturbs zymogen quiescence, and accelerates activation. J Biol Chem 2020; 295 (02) 363-374
  • 35 Røjkaer R, Schousboe I. Partial identification of the Zn2+-binding sites in factor XII and its activation derivatives. Eur J Biochem 1997; 247 (02) 491-496
  • 36 Chaudhry SA, Serrata M, Tomczak L. et al. Cationic zinc is required for factor XII recruitment and activation by stimulated platelets and for thrombus formation in vivo. J Thromb Haemost 2020; 18 (09) 2318-2328
  • 37 Gordon EM, Venkatesan N, Salazar R. et al. Factor XII-induced mitogenesis is mediated via a distinct signal transduction pathway that activates a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 1996; 93 (05) 2174-2179
  • 38 LaRusch GA, Mahdi F, Shariat-Madar Z. et al. Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis. Blood 2010; 115 (24) 5111-5120
  • 39 Ghebrehiwet B, Lim BL, Peerschke EI, Willis AC, Reid KB. Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular “heads” of C1q. J Exp Med 1994; 179 (06) 1809-1821
  • 40 Joseph K, Ghebrehiwet B, Peerschke EI, Reid KB, Kaplan AP. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci U S A 1996; 93 (16) 8552-8557
  • 41 Feng X, Tonnesen MG, Peerschke EI, Ghebrehiwet B. Cooperation of C1q receptors and integrins in C1q-mediated endothelial cell adhesion and spreading. J Immunol 2002; 168 (05) 2441-2448
  • 42 Kaira BG, Slater A, McCrae KR. et al. Factor XII and kininogen asymmetric assembly with gC1qR/C1QBP/P32 is governed by allostery. Blood 2020; 136 (14) 1685-1697
  • 43 Dedio J, Jahnen-Dechent W, Bachmann M, Müller-Esterl W. The multiligand-binding protein gC1qR, putative C1q receptor, is a mitochondrial protein. J Immunol 1998; 160 (07) 3534-3542
  • 44 Cichon S, Martin L, Hennies HC. et al. Increased activity of coagulation factor XII (Hageman factor) causes hereditary angioedema type III. Am J Hum Genet 2006; 79 (06) 1098-1104
  • 45 Björkqvist J, de Maat S, Lewandrowski U. et al. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Invest 2015; 125 (08) 3132-3146
  • 46 de Maat S, Björkqvist J, Suffritti C. et al. Plasmin is a natural trigger for bradykinin production in patients with hereditary angioedema with factor XII mutations. J Allergy Clin Immunol 2016; 138 (05) 1414-1423.e9
  • 47 Bork K, Wulff K, Rossmann H. et al. Hereditary angioedema cosegregating with a novel kininogen 1 gene mutation changing the N-terminal cleavage site of bradykinin. Allergy 2019; 74 (12) 2479-2481
  • 48 Bafunno V, Firinu D, D'Apolito M. et al. Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J Allergy Clin Immunol 2018; 141 (03) 1009-1017
  • 49 Bork K, Wulff K, Steinmüller-Magin L. et al. Hereditary angioedema with a mutation in the plasminogen gene. Allergy 2018; 73 (02) 442-450
  • 50 Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun 2006; 343 (04) 1286-1289
  • 51 Sala-Cunill A, Björkqvist J, Senter R. et al. Plasma contact system activation drives anaphylaxis in severe mast cell-mediated allergic reactions. J Allergy Clin Immunol 2015; 135 (04) 1031-1043.e6
  • 52 Zamolodchikov D, Renné T, Strickland S. The Alzheimer's disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII. J Thromb Haemost 2016; 14 (05) 995-1007
  • 53 Zamolodchikov D, Chen ZL, Conti BA, Renné T, Strickland S. Activation of the factor XII-driven contact system in Alzheimer's disease patient and mouse model plasma. Proc Natl Acad Sci U S A 2015; 112 (13) 4068-4073
  • 54 Bäck J, Sanchez J, Elgue G, Ekdahl KN, Nilsson B. Activated human platelets induce factor XIIa-mediated contact activation. Biochem Biophys Res Commun 2010; 391 (01) 11-17
  • 55 Johne J, Blume C, Benz PM. et al. Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma. Biol Chem 2006; 387 (02) 173-178
  • 56 Walsh PN, Griffin JH. Contributions of human platelets to the proteolytic activation of blood coagulation factors XII and XI. Blood 1981; 57 (01) 106-118
  • 57 Latour JG, McKay DG, Parrish MH. Activation of Hageman factor by cardiac arrest. Thromb Diath Haemorrh 1972; 27 (03) 543-553
  • 58 Walsh PN. The role of platelets in the contact phase of blood coagulation. Br J Haematol 1972; 22 (02) 237-254
  • 59 Castaldi PA, Larrieu MJ, Caen J. Availability of platelet factor 3 and activation of factor XII in thrombasthenia. Nature 1965; 207 (995) 422-424
  • 60 Ruiz FA, Lea CR, Oldfield E, Docampo R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 2004; 279 (43) 44250-44257
  • 61 Müller F, Renné T. Platelet polyphosphates: the nexus of primary and secondary hemostasis. Scand J Clin Lab Invest 2011; 71 (02) 82-86
  • 62 Nickel KF, Spronk HM, Mutch NJ, Renné T. Time-dependent degradation and tissue factor addition mask the ability of platelet polyphosphates in activating factor XII-mediated coagulation. Blood 2013; 122 (23) 3847-3849
  • 63 Labberton L, Kenne E, Long AT. et al. Neutralizing blood-borne polyphosphate in vivo provides safe thromboprotection. Nat Commun 2016; 7: 12616
  • 64 Donovan AJ, Kalkowski J, Smith SA, Morrissey JH, Liu Y. Size-controlled synthesis of granular polyphosphate nanoparticles at physiologic salt concentrations for blood clotting. Biomacromolecules 2014; 15 (11) 3976-3984
  • 65 Verhoef JJ, Barendrecht AD, Nickel KF. et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood 2017; 129 (12) 1707-1717
  • 66 Smith SA, Choi SH, Davis-Harrison R. et al. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood 2010; 116 (20) 4353-4359
  • 67 Werner TP, Amrhein N, Freimoser FM. Novel method for the quantification of inorganic polyphosphate (iPoP) in Saccharomyces cerevisiae shows dependence of iPoP content on the growth phase. Arch Microbiol 2005; 184 (02) 129-136
  • 68 Mailer RKW, Hänel L, Allende M, Renné T. Polyphosphate as a target for interference with inflammation and thrombosis. Front Med (Lausanne) 2019; 6: 76
  • 69 Norbis F, Boll M, Stange G. et al. Identification of a cDNA/protein leading to an increased Pi-uptake in Xenopus laevis oocytes. J Membr Biol 1997; 156 (01) 19-24
  • 70 Auesukaree C, Tochio H, Shirakawa M, Kaneko Y, Harashima S. Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae . J Biol Chem 2005; 280 (26) 25127-25133
  • 71 Ghosh S, Shukla D, Suman K. et al. Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 2013; 122 (08) 1478-1486
  • 72 Mailer RK, Allende M, Heestermans M. et al. Xenotropic and polytropic retrovirus receptor 1 regulates procoagulant platelet polyphosphate. Blood 2021; 137 (10) 1392-1405
  • 73 Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renné T, ten Cate H, Spronk HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 2012; 10 (07) 1355-1362
  • 74 Tripisciano C, Weiss R, Karuthedom George S, Fischer MB, Weber V. Extracellular vesicles derived from platelets, red blood cells, and monocyte-like cells differ regarding their ability to induce factor XII-dependent thrombin generation. Front Cell Dev Biol 2020; 8: 298
  • 75 Noubouossie DF, Henderson MW, Mooberry M. et al. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood 2020; 135 (10) 755-765
  • 76 Kearney KJ, Butler J, Posada OM. et al. Kallikrein directly interacts with and activates Factor IX, resulting in thrombin generation and fibrin formation independent of Factor XI. Proc Natl Acad Sci U S A 2021; 118 (03) e2014810118
  • 77 Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 2010; 39: 407-427
  • 78 Yang A, Chen F, He C. et al. The Procoagulant activity of apoptotic cells is mediated by interaction with Factor XII. Front Immunol 2017; 8: 1188
  • 79 Klein S, Spannagl M, Engelmann B. Phosphatidylethanolamine participates in the stimulation of the contact system of coagulation by very-low-density lipoproteins. Arterioscler Thromb Vasc Biol 2001; 21 (10) 1695-1700
  • 80 Zhu S, Diamond SL. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb Res 2014; 134 (06) 1335-1343
  • 81 Otrocka-Domagała I, Jastrzębski P, Adamiak Z. et al. Safety of the long-term application of QuikClot Combat Gauze, ChitoGauze PRO and Celox Gauze in a femoral artery injury model in swine - a preliminary study. Pol J Vet Sci 2016; 19 (02) 337-343
  • 82 Juang LJ, Mazinani N, Novakowski SK. et al. Coagulation factor XII contributes to hemostasis when activated by soil in wounds. Blood Adv 2020; 4 (08) 1737-1745
  • 83 Robinson AJ, Kropatkin M, Aggeler PM. Hageman factor (factor XII) deficiency in marine mammals. Science 1969; 166 (3911): 1420-1422
  • 84 Doolittle RF. Step-by-step evolution of vertebrate blood coagulation. Cold Spring Harb Symp Quant Biol 2009; 74: 35-40
  • 85 Forbes GL, Merkulova A, Pinheiro A. et al. Poly (acrylic acid) (PAA) is a contact system activator with properties to stop hemorrhage. Thromb Res 2020; 193: 142-145
  • 86 Tans G, Griffin JH. Properties of sulfatides in factor-XII-dependent contact activation. Blood 1982; 59 (01) 69-75
  • 87 España F, Ratnoff OD. The role of prekallikrein and high-molecular-weight kininogen in the contact activation of Hageman factor (factor XII) by sulfatides and other agents. J Lab Clin Med 1983; 102 (04) 487-499
  • 88 Bock PE, Srinivasan KR, Shore JD. Activation of intrinsic blood coagulation by ellagic acid: insoluble ellagic acid-metal ion complexes are the activating species. Biochemistry 1981; 20 (25) 7258-7266
  • 89 Girolami A, Cliffton EE. Hypercoagulable state induced in humans by the intravenous administration of purified ellagic acid. Thromb Diath Haemorrh 1967; 17 (1-2): 165-175
  • 90 Samuel M, Pixley RA, Villanueva MA, Colman RW, Villanueva GB. Human factor XII (Hageman factor) autoactivation by dextran sulfate. Circular dichroism, fluorescence, and ultraviolet difference spectroscopic studies. J Biol Chem 1992; 267 (27) 19691-19697
  • 91 Siebeck M, Cheronis JC, Fink E. et al. Dextran sulfate activates contact system and mediates arterial hypotension via B2 kinin receptors. J Appl Physiol (1985) 1994; 77 (06) 2675-2680
  • 92 Björkqvist J, Lecher B, Maas C, Renné T. Zinc-dependent contact system activation induces vascular leakage and hypotension in rodents. Biol Chem 2013; 394 (09) 1195-1204
  • 93 Corbier A, Le Berre N, Rampe D. et al. Oversulfated chondroitin sulfate and OSCS-contaminated heparin cause dose- and route-dependent hemodynamic effects in the rat. Toxicol Sci 2011; 121 (02) 417-427
  • 94 Guerrini M, Beccati D, Shriver Z. et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 2008; 26 (06) 669-675
  • 95 Lin L, Xu L, Xiao C. et al. Plasma contact activation by a fucosylated chondroitin sulfate and its structure-activity relationship study. Glycobiology 2018; 28 (10) 754-764
  • 96 Sperling C, Maitz MF, Grasso S, Werner C, Kanse SM. A positively charged surface triggers coagulation activation through Factor VII activating protease (FSAP). ACS Appl Mater Interfaces 2017; 9 (46) 40107-40116
  • 97 Weiss AS, Gallin JI, Kaplan AP. Fletcher factor deficiency. A diminished rate of Hageman factor activation caused by absence of prekallikrein with abnormalities of coagulation, fibrinolysis, chemotactic activity, and kinin generation. J Clin Invest 1974; 53 (02) 622-633
  • 98 Bork K, Witzke G. Shortened activated partial thromboplastin time may help in diagnosing hereditary and acquired angioedema. Int Arch Allergy Immunol 2016; 170 (02) 101-107
  • 99 Kanaji T, Okamura T, Osaki K. et al. A common genetic polymorphism (46 C to T substitution) in the 5′-untranslated region of the coagulation factor XII gene is associated with low translation efficiency and decrease in plasma factor XII level. Blood 1998; 91 (06) 2010-2014
  • 100 Bachler M, Niederwanger C, Hell T. et al. Influence of factor XII deficiency on activated partial thromboplastin time (aPTT) in critically ill patients. J Thromb Thrombolysis 2019; 48 (03) 466-474
  • 101 Marcoux G, Duchez AC, Rousseau M. et al. Microparticle and mitochondrial release during extended storage of different types of platelet concentrates. Platelets 2017; 28 (03) 272-280
  • 102 McMullen BA, Fujikawa K. Amino acid sequence of the heavy chain of human alpha-factor XIIa (activated Hageman factor). J Biol Chem 1985; 260 (09) 5328-5341
  • 103 Schousboe I. Contact activation in human plasma is triggered by zinc ion modulation of factor XII (Hageman factor). Blood Coagul Fibrinolysis 1993; 4 (05) 671-678
  • 104 Mahdi F, Madar ZS, Figueroa CD, Schmaier AH. Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood 2002; 99 (10) 3585-3596
  • 105 Yamada KM. Cell surface interactions with extracellular materials. Annu Rev Biochem 1983; 52: 761-799
  • 106 Cool DE, MacGillivray RT. Characterization of the human blood coagulation factor XII gene. Intron/exon gene organization and analysis of the 5′-flanking region. J Biol Chem 1987; 262 (28) 13662-13673
  • 107 Harris RJ, Ling VT, Spellman MW. O-linked fucose is present in the first epidermal growth factor domain of factor XII but not protein C. J Biol Chem 1992; 267 (08) 5102-5107
  • 108 Liu T, Qian WJ, Gritsenko MA. et al. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 2005; 4 (06) 2070-2080
  • 109 López-Gálvez R, de la Morena-Barrio ME, López-Lera A. et al. Factor XII in PMM2-CDG patients: role of N-glycosylation in the secretion and function of the first element of the contact pathway. Orphanet J Rare Dis 2020; 15 (01) 280
  • 110 Bunkenborg J, Pilch BJ, Podtelejnikov AV, Wiśniewski JR. Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics 2004; 4 (02) 454-465
  • 111 Naudin C, Burillo E, Blankenberg S, Butler L, Renné T. Factor XII contact activation. Semin Thromb Hemost 2017; 43 (08) 814-826
  • 112 Sabater-Lleal M, Chillón M, Mordillo C. et al. Combined cis-regulator elements as important mechanism affecting FXII plasma levels. Thromb Res 2010; 125 (02) e55-e60
  • 113 Lombardi AM, Bortoletto E, Scarparo P, Scapin M, Santarossa L, Girolami A. Genetic study in patients with factor XII deficiency: a report of three new mutations exon 13 (Q501STOP), exon 14 (P547L) and -13C>T promoter region in three compound heterozygotes. Blood Coagul Fibrinolysis 2008; 19 (07) 639-643
  • 114 Hofferbert S, Müller J, Köstering H, von Ohlen WD, Schloesser M. A novel 5′-upstream mutation in the factor XII gene is associated with a TaqI restriction site in an Alu repeat in factor XII-deficient patients. Hum Genet 1996; 97 (06) 838-841
  • 115 Schloesser M, Zeerleder S, Lutze G. et al. Mutations in the human factor XII gene. Blood 1997; 90 (10) 3967-3977
  • 116 Kondo S, Tokunaga F, Kawano S, Oono Y, Kumagai S, Koide T. Factor XII Tenri, a novel cross-reacting material negative factor XII deficiency, occurs through a proteasome-mediated degradation. Blood 1999; 93 (12) 4300-4308
  • 117 Feng Y, Ye X, Pang Y, Dai J, Wang XF, Zhou XH. A novel mutation in a patient with congenital coagulation factor XII deficiency. Chin Med J (Engl) 2008; 121 (13) 1241-1244
  • 118 Singhamatr P, Kanjanapongkul S, Rojnuckarin P. Molecular analysis of factor XII gene in Thai patients with factor XII deficiency. Blood Coagul Fibrinolysis 2013; 24 (06) 599-604
  • 119 Kim HJ, Kim HJ, Kwon EH, Lee KO, Park IA, Kim SH. Novel deleterious mutation in the F12 gene in a Korean family with severe coagulation factor XII deficiency. Blood Coagul Fibrinolysis 2010; 21 (07) 683-686
  • 120 Matsuki E, Miyakawa Y, Okamoto S. A novel factor XII mutation, FXII R84P, causing factor XII deficiency in a patient with hereditary spastic paraplegia. Blood Coagul Fibrinolysis 2011; 22 (03) 227-230
  • 121 Ye X, Feng Y, Ding Q, Dai J, Wang X. Genetic analysis of a pedigree with combined factor XII and factor XI deficiency. Blood Coagul Fibrinolysis 2011; 22 (02) 118-122
  • 122 Kwon MJ, Kim HJ, Lee KO, Jung CW, Kim SH. Molecular genetic analysis of Korean patients with coagulation factor XII deficiency. Blood Coagul Fibrinolysis 2010; 21 (04) 308-312
  • 123 Kanaji T, Kanaji S, Osaki K. et al. Identification and characterization of two novel mutations (Q421 K and R123P) in congenital factor XII deficiency. Thromb Haemost 2001; 86 (06) 1409-1415
  • 124 Matsukuma E, Gotoh Y, Kuroyanagi Y. et al. A case of atypical hemolytic uremic syndrome due to anti-factor H antibody in a patient presenting with a factor XII deficiency identified two novel mutations. Clin Exp Nephrol 2011; 15 (02) 269-274
  • 125 Jin P, Jiang W, Yan H. et al. Novel mutations in congenital factor XII deficiency. Front Biosci 2016; 21: 419-429
  • 126 Yang L, Wang Y, Zhou J. et al. Identification of genetic defects underlying FXII deficiency in four unrelated Chinese patients. Acta Haematol 2016; 135 (04) 238-240
  • 127 Xie H, Lv M, Yang X. et al. [Identification of a novel mutation of factor XII gene in a family with coagulation FXII deficiency]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2013; 30 (03) 313-317
  • 128 Iijima K, Arakawa Y, Sugahara Y. et al. Factor XII Osaka: abnormal factor XII with partially defective prekallikrein cleavage activity. Thromb Haemost 2011; 105 (03) 473-478
  • 129 Cheng X, Yang L, Huang G, Jin Y, Hao X, Wang M. Genetic analysis of a hereditary factor XII deficiency pedigree of a consanguineous marriage due to a homozygous F12 gene mutation: Gly341Arg. Hematology 2017; 22 (05) 310-315
  • 130 Suzuki K, Murai K, Suwabe A, Ishida Y. Factor XII Ofunato: Lys346Asn mutation associated with blood coagulation factor XII deficiency causes impaired secretion through a proteasome-mediated degradation. Thromb Res 2010; 125 (05) 438-443
  • 131 Wuillemin WA, Furlan M, Stricker H, Lämmle B. Functional characterization of a variant factor XII (F XII Locarno) in a cross reacting material positive F XII deficient plasma. Thromb Haemost 1992; 67 (02) 219-225
  • 132 Hovinga JK, Schaller J, Stricker H, Wuillemin WA, Furlan M, Lämmle B. Coagulation factor XII Locarno: the functional defect is caused by the amino acid substitution Arg 353-->Pro leading to loss of a kallikrein cleavage site. Blood 1994; 84 (04) 1173-1181
  • 133 Oguchi S, Ishii K, Moriki T. et al. Factor XII Shizuoka, a novel mutation (Ala392Thr) identified and characterized in a patient with congenital coagulation factor XII deficiency. Thromb Res 2005; 115 (03) 191-197
  • 134 Wada H, Nishioka J, Kasai Y. et al. Molecular characterization of coagulation factor XII deficiency in a Japanese family. Thromb Haemost 2003; 90 (01) 59-63
  • 135 Zhang H, Liu S, Lin C. et al. Compound heterozygous mutations Glu502Lys and Met527Thr of the FXII gene in a patient with factor XII deficiency. Hematology 2019; 24 (01) 420-425
  • 136 Li M, Xie H, Wang M, Ding H. Molecular characterization of a novel missense mutation (Asp538Asn) in a Chinese patient with factor XII deficiency. Clin Lab 2015; 61 (12) 1967-1971
  • 137 Schloesser M, Hofferbert S, Bartz U, Lutze G, Lämmle B, Engel W. The novel acceptor splice site mutation 11396(G-->A) in the factor XII gene causes a truncated transcript in cross-reacting material negative patients. Hum Mol Genet 1995; 4 (07) 1235-1237
  • 138 Miyata T, Kawabata S, Iwanaga S, Takahashi I, Alving B, Saito H. Coagulation factor XII (Hageman factor) Washington D.C.: inactive factor XIIa results from Cys-571----Ser substitution. Proc Natl Acad Sci U S A 1989; 86 (21) 8319-8322