Hamostaseologie 2021; 41(06): 475-488
DOI: 10.1055/a-1515-0813
Review Article

Diagnosing Inherited Platelet Disorders: Modalities and Consequences

Carlo Zaninetti
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
2   Department of Internal Medicine, University of Pavia, Pavia, Italy
,
Martina Wolff
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
,
Andreas Greinacher
1   Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
› Author Affiliations

Abstract

Inherited platelet disorders (IPDs) are a group of rare conditions featured by reduced circulating platelets and/or impaired platelet function causing variable bleeding tendency. Additional hematological or non hematological features, which can be congenital or acquired, distinctively mark the clinical picture of a subgroup of patients. Recognizing an IPD is challenging, and diagnostic delay or mistakes are frequent. Despite the increasing availability of next-generation sequencing, a careful phenotyping of suspected patients—concerning the general clinical features, platelet morphology, and function—is still demanded. The cornerstones of IPD diagnosis are clinical evaluation, laboratory characterization, and genetic testing. Achieving a diagnosis of IPD is desirable for several reasons, including the possibility of tailored therapeutic strategies and individual follow-up programs. However, detailed investigations can also open complex scenarios raising ethical issues in case of IPDs predisposing to hematological malignancies. This review offers an overview of IPD diagnostic workup, from the interview with the proband to the molecular confirmation of the suspected disorder. The main implications of an IPD diagnosis are also discussed.

Authors' Contributions

C.Z., M.W., and A.G. wrote the article. All the authors approved the final version of the manuscript.




Publication History

Received: 08 January 2021

Accepted: 19 May 2021

Article published online:
14 August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives. Haematologica 2020; 105 (08) 2004-2019
  • 2 Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica 2021; 106 (02) 337-350
  • 3 Megy K, Downes K, Simeoni I. et al; Subcommittee on Genomics in Thrombosis and Hemostasis. Curated disease-causing genes for bleeding, thrombotic, and platelet disorders: communication from the SSC of the ISTH. J Thromb Haemost 2019; 17 (08) 1253-1260
  • 4 Balduini CL, Pecci A, Noris P. Inherited thrombocytopenias: the evolving spectrum. Hamostaseologie 2012; 32 (04) 259-270
  • 5 Gresele P, Bury L, Falcinelli E. Inherited platelet function disorders: algorithms for phenotypic and genetic investigation. Semin Thromb Hemost 2016; 42 (03) 292-305
  • 6 Pecci A, Balduini CL. Lessons in platelet production from inherited thrombocytopenias. Br J Haematol 2014; 165 (02) 179-192
  • 7 Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. Hematology (Am Soc Hematol Educ Program) 2017; 2017 (01) 385-399
  • 8 Gresele P, Bury L, Mezzasoma AM, Falcinelli E. Platelet function assays in diagnosis: an update. Expert Rev Hematol 2019; 12 (01) 29-46
  • 9 Melazzini F, Zaninetti C, Balduini CL. Bleeding is not the main clinical issue in many patients with inherited thrombocytopaenias. Haemophilia 2017; 23 (05) 673-681
  • 10 Al-Huniti A, Kahr WH. Inherited platelet disorders: diagnosis and management. Transfus Med Rev 2020; 34 (04) 277-285
  • 11 Noris P, Schlegel N, Klersy C. et al; European Hematology Association – Scientific Working Group on Thrombocytopenias and Platelet Function Disorders. Analysis of 339 pregnancies in 181 women with 13 different forms of inherited thrombocytopenia. Haematologica 2014; 99 (08) 1387-1394
  • 12 Zaninetti C, Santini V, Tiniakou M, Barozzi S, Savoia A, Pecci A. Inherited thrombocytopenia caused by ANKRD26 mutations misdiagnosed and treated as myelodysplastic syndrome: report on two cases. J Thromb Haemost 2017; 15 (12) 2388-2392
  • 13 Downes K, Borry P, Ericson K. et al; Subcommittee on Genomics in Thrombosis, Hemostasis. Clinical management, ethics and informed consent related to multi-gene panel-based high throughput sequencing testing for platelet disorders: communication from the SSC of the ISTH. J Thromb Haemost 2020; 18 (10) 2751-2758
  • 14 Althaus K, Najm J, Greinacher A. MYH9 related platelet disorders - often unknown and misdiagnosed. Klin Padiatr 2011; 223 (03) 120-125
  • 15 Stritt S, Nurden P, Turro E. et al; BRIDGE-BPD Consortium. A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss. Blood 2016; 127 (23) 2903-2914
  • 16 Albert MH, Bittner TC, Nonoyama S. et al. X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood 2010; 115 (16) 3231-3238
  • 17 Candotti F. Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich syndrome. J Clin Immunol 2018; 38 (01) 13-27
  • 18 Pecci A, Klersy C, Gresele P. et al. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2014; 35 (02) 236-247
  • 19 Gresele P, Orsini S, Noris P. et al; BAT-VAL Study Investigators. Validation of the ISTH/SSC bleeding assessment tool for inherited platelet disorders: a communication from the Platelet Physiology SSC. J Thromb Haemost 2020; 18 (03) 732-739
  • 20 Orsini S, Noris P, Bury L. et al; European Hematology Association - Scientific Working Group (EHA-SWG) on thrombocytopenias and platelet function disorders. Bleeding risk of surgery and its prevention in patients with inherited platelet disorders. Haematologica 2017; 102 (07) 1192-1203
  • 21 Flaujac C, Boukour S, Cramer-Bordé E. Platelets and viruses: an ambivalent relationship. Cell Mol Life Sci 2010; 67 (04) 545-556
  • 22 Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 1981; 47 (01) 207-214
  • 23 Rodeghiero F, Tosetto A, Abshire T. et al; ISTH/SSC Joint VWF and Perinatal/Pediatric Hemostasis Subcommittees Working Group. ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders. J Thromb Haemost 2010; 8 (09) 2063-2065
  • 24 Rodeghiero F, Pabinger I, Ragni M. et al. Fundamentals for a systematic approach to mild and moderate inherited bleeding disorders: an EHA Consensus Report. HemaSphere 2019; 3 (04) e286
  • 25 Rydz N, James PD. The evolution and value of bleeding assessment tools. J Thromb Haemost 2012; 10 (11) 2223-2229
  • 26 Gresele P, Falcinelli E, Bury L. et al; BAT-VAL Study Investigators. The ISTH bleeding assessment tool as predictor of bleeding events in inherited platelet disorders: Communication from the ISTH SSC Subcommittee on Platelet Physiology. J Thromb Haemost 2021; 19 (05) 1364-1371
  • 27 Toriello HV. Thrombocytopenia-absent radius syndrome. Semin Thromb Hemost 2011; 37 (06) 707-712
  • 28 Niihori T, Ouchi-Uchiyama M, Sasahara Y. et al. Mutations in MECOM, encoding oncoprotein EVI1, cause radioulnar synostosis with amegakaryocytic thrombocytopenia. Am J Hum Genet 2015; 97 (06) 848-854
  • 29 Favier R, Akshoomoff N, Mattson S, Grossfeld P. Jacobsen syndrome: advances in our knowledge of phenotype and genotype. Am J Med Genet C Semin Med Genet 2015; 169 (03) 239-250
  • 30 Turro E, Greene D, Wijgaerts A. et al; BRIDGE-BPD Consortium. A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. Sci Transl Med 2016; 8 (328) 328ra30
  • 31 Reynolds TM. Sitosterolaemia: a rare cause of accelerated atherosclerosis. J Clin Pathol 2018; 71 (10) 863
  • 32 Nesin V, Wiley G, Kousi M. et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci U S A 2014; 111 (11) 4197-4202
  • 33 Markello T, Chen D, Kwan JY. et al. York platelet syndrome is a CRAC channelopathy due to gain-of-function mutations in STIM1. Mol Genet Metab 2015; 114 (03) 474-482
  • 34 Noris P, Klersy C, Gresele P. et al; Italian Gruppo di Studio delle Piastrine. Platelet size for distinguishing between inherited thrombocytopenias and immune thrombocytopenia: a multicentric, real life study. Br J Haematol 2013; 162 (01) 112-119
  • 35 Noris P, Biino G, Pecci A. et al. Platelet diameters in inherited thrombocytopenias: analysis of 376 patients with all known disorders. Blood 2014; 124 (06) e4-e10
  • 36 Bottega R, Pecci A, De Candia E. et al. Correlation between platelet phenotype and NBEAL2 genotype in patients with congenital thrombocytopenia and α-granule deficiency. Haematologica 2013; 98 (06) 868-874
  • 37 Monteferrario D, Bolar NA, Marneth AE. et al. A dominant-negative GFI1B mutation in the gray platelet syndrome. N Engl J Med 2014; 370 (03) 245-253
  • 38 Millikan PD, Balamohan SM, Raskind WH, Kacena MA. Inherited thrombocytopenia due to GATA-1 mutations. Semin Thromb Hemost 2011; 37 (06) 682-689
  • 39 Hatta K, Kunishima S, Suganuma H, Tanaka N, Ohkawa N, Shimizu T. A family having type 2B von Willebrand disease with a novel VWF p.R1308S mutation: detection of characteristic platelet aggregates on peripheral blood smears as the key aspect of diagnosis. Thromb Res 2015; 136 (04) 813-817
  • 40 Federici AB, Mannucci PM, Castaman G. et al. Clinical and molecular predictors of thrombocytopenia and risk of bleeding in patients with von Willebrand disease type 2B: a cohort study of 67 patients. Blood 2009; 113 (03) 526-534
  • 41 Othman M, Lopez JA, Ware J. Platelet-type von Willebrand disease update: the disease, the molecule and the animal model. Expert Rev Hematol 2011; 4 (05) 475-477
  • 42 Savoia A, De Rocco D, Panza E. et al. Heavy chain myosin 9-related disease (MYH9 -RD): neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder. Thromb Haemost 2010; 103 (04) 826-832
  • 43 Balduini CL, Pecci A, Loffredo G. et al. Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis. Thromb Haemost 2004; 91 (01) 129-140
  • 44 Neff AT. Sitosterolemia's stomatocytosis and macrothrombocytopenia. Blood 2012; 120 (22) 4283
  • 45 Greinacher A, Pecci A, Kunishima S. et al. Diagnosis of inherited platelet disorders on a blood smear: a tool to facilitate worldwide diagnosis of platelet disorders. J Thromb Haemost 2017; 15 (07) 1511-1521
  • 46 Zaninetti C, Greinacher A. Diagnosis of inherited platelet disorders on a blood smear. J Clin Med 2020; 9 (02) 539
  • 47 Bury L, Falcinelli E, Chiasserini D, Springer TA, Italiano Jr JE, Gresele P. Cytoskeletal perturbation leads to platelet dysfunction and thrombocytopenia in variant forms of Glanzmann thrombasthenia. Haematologica 2016; 101 (01) 46-56
  • 48 Savoia A, Kunishima S, De Rocco D. et al. Spectrum of the mutations in Bernard-Soulier syndrome. Hum Mutat 2014; 35 (09) 1033-1045
  • 49 Nurden P, Debili N, Coupry I. et al. Thrombocytopenia resulting from mutations in filamin A can be expressed as an isolated syndrome. Blood 2011; 118 (22) 5928-5937
  • 50 Kunishima S, Nishimura S, Suzuki H, Imaizumi M, Saito H. TUBB1 mutation disrupting microtubule assembly impairs proplatelet formation and results in congenital macrothrombocytopenia. Eur J Haematol 2014; 92 (04) 276-282
  • 51 Kitamura K, Okuno Y, Yoshida K. et al. Functional characterization of a novel GFI1B mutation causing congenital macrothrombocytopenia. J Thromb Haemost 2016; 14 (07) 1462-1469
  • 52 Leinoe E, Kjaersgaard M, Zetterberg E, Ostrowski S, Greinacher A, Rossing M. Highly impaired platelet ultrastructure in two families with novel IKZF5 variants. Platelets 2020; 18: 1-6
  • 53 Amoruso M, Alberio L, Nagy M. EDTA-related degranulation mimicking Storage Pool Disease. Am J Hematol 2018; 93 (09) 1192-1193
  • 54 Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927-929
  • 55 Alessi M-C, Sié P, Payrastre B. Strengths and weaknesses of light transmission aggregometry in diagnosing hereditary platelet function disorders. J Clin Med 2020; 9 (03) 763
  • 56 Gresele P, Falcinelli E, Bury L. Inherited platelet function disorders. Diagnostic approach and management. Hamostaseologie 2016; 36 (04) 265-278
  • 57 Berndt MC, Andrews RK. Bernard-Soulier syndrome. Haematologica 2011; 96 (03) 355-359
  • 58 Ruggeri ZM, Bader R, de Marco L. Glanzmann thrombasthenia: deficient binding of von Willebrand factor to thrombin-stimulated platelets. Proc Natl Acad Sci U S A 1982; 79 (19) 6038-6041
  • 59 Frontroth JP, Favaloro EJ. Ristocetin-induced platelet aggregation (RIPA) and RIPA mixing studies. Methods Mol Biol 2017; 1646: 473-494
  • 60 Othman M. Platelet-type von Willebrand disease and type 2B von Willebrand disease: a story of nonidentical twins when two different genetic abnormalities evolve into similar phenotypes. Semin Thromb Hemost 2007; 33 (08) 780-786
  • 61 Dumont B, Lasne D, Rothschild C. et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood 2009; 114 (09) 1900-1903
  • 62 Gresele P. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015; 13 (02) 314-322
  • 63 Dupuis A, Bordet J-C, Eckly A, Gachet C. Platelet δ-storage pool disease: an update. J Clin Med 2020; 9 (08) 2508
  • 64 Femia EA, Scavone M, Lecchi A, Cattaneo M. Effect of platelet count on platelet aggregation measured with impedance aggregometry (Multiplate™ analyzer) and with light transmission aggregometry. J Thromb Haemost 2013; 11 (12) 2193-2196
  • 65 Cattaneo M, Cerletti C, Harrison P. et al. Recommendations for the standardization of light transmission aggregometry: a consensus of the working party from the platelet physiology subcommittee of SSC/ISTH. J Thromb Haemost 2013; 11 (06) 1183-1189
  • 66 Würtz M, Hvas AM, Christensen KH, Rubak P, Kristensen SD, Grove EL. Rapid evaluation of platelet function using the Multiplate® Analyzer. Platelets 2014; 25 (08) 628-633
  • 67 Al Ghaithi R, Drake S, Watson SP, Morgan NV, Harrison P. Comparison of multiple electrode aggregometry with lumi-aggregometry for the diagnosis of patients with mild bleeding disorders. J Thromb Haemost 2017; 15 (10) 2045-2052
  • 68 Clauser S, Cramer-Bordé E. Role of platelet electron microscopy in the diagnosis of platelet disorders. Semin Thromb Hemost 2009; 35 (02) 213-223
  • 69 Cramer EM, Meyer D, le Menn R, Breton-Gorius J. Eccentric localization of von Willebrand factor in an internal structure of platelet alpha-granule resembling that of Weibel-Palade bodies. Blood 1985; 66 (03) 710-713
  • 70 Sehgal S, Storrie B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost 2007; 5 (10) 2009-2016
  • 71 Gunay-Aygun M, Falik-Zaccai TC, Vilboux T. et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet 2011; 43 (08) 732-734
  • 72 Freson K, Wijgaerts A, Van Geet C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets 2017; 28 (07) 731-734
  • 73 Noetzli L, Lo RW, Lee-Sherick AB. et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015; 47 (05) 535-538
  • 74 Melazzini F, Palombo F, Balduini A. et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica. 2016; 101 (11) 1333-1342
  • 75 Noris P, Perrotta S, Seri M. et al. Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: Analysis of 78 patients from 21 families. Blood. 2011; 117 (24) 6673-6680
  • 76 Nurden AT, Nurden P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 2007; 21 (01) 21-36
  • 77 Mumford AD, Frelinger III AL, Gachet C. et al. A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb Haemost 2015; 114 (01) 14-25
  • 78 Skaer RJ, Flemans RJ, McQuilkan S. Mepacrine stains the dense bodies of human platelets and not platelet lysosomes. Br J Haematol 1981; 49 (03) 435-438
  • 79 Rendu F, Nurden AT, Lebret M, Caen JP. Relationship between mepacrine-labelled dense body number, platelet capacity to accumulate 14C-5-HT and platelet density in the Bernard-Soulier and Hermansky-Pudlak syndromes. Thromb Haemost 1979; 42 (02) 694-704
  • 80 van Asten I, Blaauwgeers M, Granneman L. et al. Flow cytometric mepacrine fluorescence can be used for the exclusion of platelet dense granule deficiency. J Thromb Haemost 2020; 18 (03) 706-713
  • 81 Shattil SJ, Cunningham M, Hoxie JA. Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 1987; 70 (01) 307-315
  • 82 van Asten I, Schutgens REG, Urbanus RT. Toward flow cytometry based platelet function diagnostics. Semin Thromb Hemost 2018; 44 (03) 197-205
  • 83 Noris P, Perrotta S, Bottega R. et al. Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monoallelic Ala156Val mutation of GPIbα (Bolzano mutation). Haematologica 2012; 97 (01) 82-88
  • 84 Bury L, Zetterberg E, Leinøe EB. et al. A novel variant Glanzmann thrombasthenia due to co-inheritance of a loss- and a gain-of-function mutation of ITGB3: evidence of a dominant effect of gain-of-function mutations. Haematologica 2018; 103 (06) e259-e263
  • 85 Hermans C, Wittevrongel C, Thys C, Smethurst PA, Van Geet C, Freson K. A compound heterozygous mutation in glycoprotein VI in a patient with a bleeding disorder. J Thromb Haemost 2009; 7 (08) 1356-1363
  • 86 Noris P, Guidetti GF, Conti V. et al. Autosomal dominant thrombocytopenias with reduced expression of glycoprotein Ia. Thromb Haemost 2006; 95 (03) 483-489
  • 87 Solum NO. Procoagulant expression in platelets and defects leading to clinical disorders. Arterioscler Thromb Vasc Biol 1999; 19 (12) 2841-2846
  • 88 van Geffen JP, Swieringa F, Heemskerk JWM. Platelets and coagulation in thrombus formation: aberrations in the Scott syndrome. Thromb Res 2016; 141 (Suppl. 02) S12-S16
  • 89 Halliez M, Fouassier M, Robillard N. et al. Detection of phosphatidyl serine on activated platelets' surface by flow cytometry in whole blood: a simpler test for the diagnosis of Scott syndrome. Br J Haematol 2015; 171 (02) 290-292
  • 90 Zhou Y, Yasumoto A, Lei C. et al. Intelligent classification of platelet aggregates by agonist type. eLife 2020; 9: e52938
  • 91 Spurgeon BEJ, Naseem KM. Phosphoflow cytometry and barcoding in blood platelets: Technical and analytical considerations. Cytometry B Clin Cytom 2020; 98 (02) 123-130
  • 92 Sachs L, Denker C, Greinacher A, Palankar R. Quantifying single-platelet biomechanics: An outsider's guide to biophysical methods and recent advances. Res Pract Thromb Haemost 2020; 4 (03) 386-401
  • 93 Zaninetti C, Sachs L, Palankar R. Role of platelet cytoskeleton in platelet biomechanics: current and emerging methodologies and their potential relevance for the investigation of inherited platelet disorders. Hamostaseologie 2020; 40 (03) 337-347
  • 94 Whyte CS, Mitchell JL, Mutch NJ. Platelet-mediated modulation of fibrinolysis. Semin Thromb Hemost 2017; 43 (02) 115-128
  • 95 Solh T, Botsford A, Solh M. Glanzmann's thrombasthenia: pathogenesis, diagnosis, and current and emerging treatment options. J Blood Med 2015; 6: 219-227
  • 96 Patrono C, Rocca B. Measurement of thromboxane biosynthesis in health and disease. Front Pharmacol 2019; 10: 1244
  • 97 Antal-Szalmás P, Nagy Jr B, Debreceni IB, Kappelmayer J. Measurement of soluble biomarkers by flow cytometry. EJIFCC 2013; 23 (04) 135-142
  • 98 Falcinelli E, Francisci D, Belfiori B. et al. In vivo platelet activation and platelet hyperreactivity in abacavir-treated HIV-infected patients. Thromb Haemost 2013; 110 (02) 349-357
  • 99 Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost 2017; 15 (07) 1262-1272
  • 100 Ver Donck F, Downes K, Freson K. Strengths and limitations of high-throughput sequencing for the diagnosis of inherited bleeding and platelet disorders. J Thromb Haemost 2020; 18 (08) 1839-1845
  • 101 Bean LJH, Funke B, Carlston CM. et al; ACMG Laboratory Quality Assurance Committee. Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020; 22 (03) 453-461
  • 102 Lentaigne C, Freson K, Laffan MA, Turro E, Ouwehand WH. BRIDGE-BPD Consortium and the ThromboGenomics Consortium. Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127 (23) 2814-2823
  • 103 Simeoni I, Stephens JC, Hu F. et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016; 127 (23) 2791-2803
  • 104 Leinøe E, Gabrielaite M, Østrup O. et al. Outcome of an enhanced diagnostic pipeline for patients suspected of inherited thrombocytopenia. Br J Haematol 2019; 186 (02) 373-376
  • 105 Downes K, Megy K, Duarte D. et al; NIHR BioResource. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood 2019; 134 (23) 2082-2091
  • 106 Andersson NG, Rossing M, Fager Ferrari M. et al. Genetic screening of children with suspected inherited bleeding disorders. Haemophilia 2020; 26 (02) 314-324
  • 107 Bury L, Megy K, Stephens JC. et al. Next-generation sequencing for the diagnosis of MYH9-RD: predicting pathogenic variants. Hum Mutat 2020; 41 (01) 277-290
  • 108 Bastida JM, Del Rey M, Lozano ML. et al. Design and application of a 23-gene panel by next-generation sequencing for inherited coagulation bleeding disorders. Haemophilia 2016; 22 (04) 590-597
  • 109 Leinøe E, Zetterberg E, Kinalis S. et al. Application of whole-exome sequencing to direct the specific functional testing and diagnosis of rare inherited bleeding disorders in patients from the Öresund Region, Scandinavia. Br J Haematol 2017; 179 (02) 308-322
  • 110 Maclachlan A, Watson SP, Morgan NV. Inherited platelet disorders: insight from platelet genomics using next-generation sequencing. Platelets 2017; 28 (01) 14-19
  • 111 Wang Q, Cao L, Sheng G. et al. Application of high-throughput sequencing in the diagnosis of inherited thrombocytopenia. Clin Appl Thromb Hemost 2018; 24 (9, Suppl): 94S-103S
  • 112 Andres O, König E-M, Klopocki E, Schulze H. Use of targeted high-throughput sequencing for genetic classification of patients with bleeding diathesis and suspected platelet disorder. TH Open 2018; Dec 30; 2 (04) e445-e454
  • 113 Bastida JM, Lozano ML, Benito R. et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica 2018; 103 (01) 148-162
  • 114 Heremans J, Freson K. High-throughput sequencing for diagnosing platelet disorders: lessons learned from exploring the causes of bleeding disorders. Int J Lab Hematol 2018; 40 (Suppl. 01) 89-96
  • 115 Johnson B, Doak R, Allsup D. et al; UK GAPP Study Group. A comprehensive targeted next-generation sequencing panel for genetic diagnosis of patients with suspected inherited thrombocytopenia. Res Pract Thromb Haemost 2018; 2 (04) 640-652
  • 116 Richards S, Aziz N, Bale S. et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 117 Matthijs G, Souche E, Alders M. et al; EuroGentest, European Society of Human Genetics. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet 2016; 24 (01) 2-5
  • 118 Gomez K, Laffan M, Keeney S, Sutherland M, Curry N, Lunt P. Recommendations for the clinical interpretation of genetic variants and presentation of results to patients with inherited bleeding disorders. A UK Haemophilia Centre Doctors' Organisation Good Practice Paper. Haemophilia 2019; 25 (01) 116-126
  • 119 Landrum MJ, Lee JM, Benson M. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016; 44 (D1): D862-D868
  • 120 Vears DF, Sénécal K, Borry P. Reporting practices for variants of uncertain significance from next generation sequencing technologies. Eur J Med Genet 2017; 60 (10) 553-558
  • 121 McVey JH, Rallapalli PM, Kemball-Cook G. et al. The European Association for Haemophilia and Allied Disorders (EAHAD) coagulation factor variant databases: important resources for haemostasis clinicians and researchers. Haemophilia 2020; 26 (02) 306-313
  • 122 Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol 2019; 20 (01) 117
  • 123 Whitford W, Lehnert K, Snell RG, Jacobsen JC. Evaluation of the performance of copy number variant prediction tools for the detection of deletions from whole genome sequencing data. J Biomed Inform 2019; 94: 103174
  • 124 Lambert MP. Inherited platelet disorders: a modern approach to evaluation and treatment. Hematol Oncol Clin North Am 2019; 33 (03) 471-487
  • 125 Winikoff R, Scully MF, Robinson KS. Women and inherited bleeding disorders - a review with a focus on key challenges for 2019. Transfus Apheresis Sci 2019; 58 (05) 613-622
  • 126 Colucci G, Stutz M, Rochat S. et al. The effect of desmopressin on platelet function: a selective enhancement of procoagulant COAT platelets in patients with primary platelet function defects. Blood 2014; 123 (12) 1905-1916
  • 127 Othman M, Gresele P. Guidance on the diagnosis and management of platelet-type von Willebrand disease: a communication from the Platelet Physiology Subcommittee of the ISTH. J Thromb Haemost 2020; 18 (08) 1855-1858
  • 128 Estcourt LJ, Birchall J, Allard S. et al; British Committee for Standards in Haematology. Guidelines for the use of platelet transfusions. Br J Haematol 2017; 176 (03) 365-394
  • 129 Chitlur M, Rajpurkar M, Recht M. et al. Recognition and management of platelet-refractory bleeding in patients with Glanzmann's thrombasthenia and other severe platelet function disorders. Int J Gen Med 2017; 10: 95-99
  • 130 Pecci A, Granata A, Fiore CE, Balduini CL. Renin-angiotensin system blockade is effective in reducing proteinuria of patients with progressive nephropathy caused by MYH9 mutations (Fechtner-Epstein syndrome). Nephrol Dial Transplant 2008; 23 (08) 2690-2692
  • 131 Pecci A, Verver EJ, Schlegel N. et al. Cochlear implantation is safe and effective in patients with MYH9-related disease. Orphanet J Rare Dis 2014; 9 (01) 100
  • 132 Gröpper S, Althaus K, Najm J. et al. A patient with Fechtner syndrome successfully treated with romiplostim. Thromb Haemost 2012; 107 (03) 590-591
  • 133 Zaninetti C, Barozzi S, Bozzi V, Gresele P, Balduini CL, Pecci A. Eltrombopag in preparation for surgery in patients with severe MYH9-related thrombocytopenia. Am J Hematol 2019; 94 (08) E199-E201
  • 134 Zaninetti C, Gresele P, Bertomoro A. et al. Eltrombopag for the treatment of inherited thrombocytopenias: a phase II clinical trial. Haematologica 2020; 105 (03) 820-828
  • 135 Rodeghiero F, Pecci A, Balduini CL. Thrombopoietin receptor agonists in hereditary thrombocytopenias. J Thromb Haemost 2018; 16 (09) 1700-1710
  • 136 Westbury SK, Downes K, Burney C. et al. Phenotype description and response to thrombopoietin receptor agonist in DIAPH1-related disorder. Blood Adv. 2018; 2 (18) 2341-2346
  • 137 Galera P, Dulau-Florea A, Calvo KR. Inherited thrombocytopenia and platelet disorders with germline predisposition to myeloid neoplasia. Int J Lab Hematol 2019; 41 (Suppl. 01) 131-141
  • 138 University of Chicago Hematopoietic Malignancies Cancer Risk Team. How I diagnose and manage individuals at risk for inherited myeloid malignancies. Blood 2016; 128 (14) 1800-1813
  • 139 Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2020; 48: 100784
  • 140 Porter CC, Di Paola J, Pencheva B. ETV6 thrombocytopenia and predisposition to leukemia. In: Adam MP, Ardinger HH, Pagon RA. et al, eds. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993. –2021
  • 141 Greinacher A, Eekels JJM. Simplifying the diagnosis of inherited platelet disorders? The new tools do not make it any easier. Blood 2019; 133 (23) 2478-2483
  • 142 Greinacher A, Eekels JJM. Diagnosis of hereditary platelet disorders in the era of next-generation sequencing: “primum non nocere”. J Thromb Haemost 2019; 17 (03) 551-554