CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 362-373
DOI: 10.1055/a-1502-2611
Energy Materials in the Age of Globalization
Short Review

Polymers Made by Inverse Vulcanization for Use as Mercury Sorbents

a  Flinders University, Institute for Nanoscale Science and Technology, Sturt Road, Bedford Park, South Australia, 5035, Australia
,
Maximilian Mann
a  Flinders University, Institute for Nanoscale Science and Technology, Sturt Road, Bedford Park, South Australia, 5035, Australia
,
Max J. H. Worthington
a  Flinders University, Institute for Nanoscale Science and Technology, Sturt Road, Bedford Park, South Australia, 5035, Australia
,
Louisa J. Esdaile
a  Flinders University, Institute for Nanoscale Science and Technology, Sturt Road, Bedford Park, South Australia, 5035, Australia
b  Clean Earth Technologies, 112 Robinson Road, #05-04, Singapore 068902
› Institutsangaben
Funding Information Funding for the authors' research is provided by the Australian Research Council (DP200100090) and Clean Earth Technologies.


Abstract

Inverse vulcanization is a process in which highly abundant and low-cost elemental sulfur is copolymerized with an unsaturated organic molecule such as a polyene. This process has provided a variety of useful materials with high sulfur content—typically 50% or greater in sulfur by mass. These materials have garnered increasing interest in research as sorbents for mercury, due to the high affinity of sulfur for mercury. In this review, the features of mercury sorbents made by inverse vulcanization are presented. Additionally, case studies are provided to illustrate the variety of polymer architectures accessible with this chemistry, the versatility of these materials in mercury remediation, and prospects for industrial use.

1 Introduction

2 Sulfur Polymers by Inverse Vulcanization

3 Sulfur Polymers as Mercury Sorbents

4 Increasing Surface Area to Improve Mercury Uptake

5 Crosslinker Considerations

6 Sorption of Different Forms of Mercury

7 Life-Cycle Management

8 Conclusions and Outlook



Publikationsverlauf

Eingereicht: 22. März 2021

Angenommen: 05. Mai 2021

Publikationsdatum:
06. Mai 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Global Mercury Assessment 2018, UN Environment Programme, Chemicals and Health Branch. Geneva, Switzerland: 2019
  • 2 Esdaile LJ, Chalker JM. Chem. Eur. J. 2018; 24: 6905
  • 3 Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. AMBIO 2018; 47: 116
  • 4 Kunecki P, Czarna-Juszkiewicz D, Wdowin M. Int. J. Coal Sci. Technol. 2021; 8: 23
  • 5 Wang L, Hou D, Cao Y, Ok YS, Tack FM. G, Rinklebe J, O'Connor D. Environ. Int. 2020; 134: 105281
  • 6 Coulibaly M, Bamba D, Yao NG. A, Zoro EG, Rhaz ME. C.R. Chim. 2016; 19: 832
  • 7 Liu D, Li C, Wu J, Liu Y. Chem. Eng. J. 2020; 391: 123514
  • 8 Yu J.-G, Yue B.-Y, Wu X.-W, Liu Q, Jiao F.-P, Jiang X.-Y, Chen X.-Q. Eviron. Sci. Pollut. Res. 2016; 23: 5056
  • 9 Crockett MP, Evans AM, Worthington MJ. H, Albuquerque IS, Slattery AD, Gibson CT, Campbell JA, Lewis DA, Bernardes GJ. L, Chalker JM. Angew. Chem. Int. Ed. 2016; 55: 1714
  • 10 Worthington MJ. H, Kucera RL, Albuquerque IS, Gibson CT, Sibley A, Slattery AD, Campbell JA, Alboaiji SF. K, Muller KA, Young J, Adamson N, Gascooke JR, Jampaiah D, Sabri YM, Bhargava SK, Ippolito SJ, Lewis DA, Quinton JS, Ellis AV, Johs A, Bernardes GJ. L, Chalker JM. Chem. Eur. J. 2017; 23: 16219
  • 11 Hasell T, Parker DJ, Jones HA, McAllister T, Howdle SM. Chem. Commun. 2016; 52: 5383
  • 12 Parker DJ, Jones HA, Petcher S, Cervini L, Griffin JM, Akhtar R, Hasell T. J. Mater. Chem. A 2017; 5: 11682
  • 13 Apodaca LE. Sulfur: Mineral Commodity Summaries, January 2020. Reston, Virginia: U.S. Geological Survey;
  • 14 Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, Dirlam PT, Glass RS, Wie JJ, Nguyen NA, Guralnick BW, Park J, Somogyi A, Theato P, Mackay ME, Sung Y.-E, Char K, Pyun J. Nat. Chem. 2013; 5: 518
  • 15 Tian T, Hu R, Tang BZ. J. Am. Chem. Soc. 2018; 140: 6156
  • 16 Yasin A, Chen Y, Liu Y, Zhang L, Zan X, Zhang Y. Polym. Chem. 2020; 11: 810
  • 17 Meyer B. Chem. Rev. 1976; 76: 367
  • 18 Currell BR, Williams AJ, Mooney AJ, Nash BJ. Plasticization of Sulfur. In: New Uses of Sulfur. West J. American Chemical Society; Washington, DC: 1975. Vol. 140. 1-17
  • 19 McBee WC, Sullivan TA, Fike HL. Sulfur Construction Materials. United States Department of the Interior, Bureau of Mines; 1985. , Bulletin 678; 1-31
  • 20 Griebel JJ, Glass RS, Char K, Pyun J. Prog. Polym. Sci. 2016; 58: 90
  • 21 Zhang Y, Glass RS, Char K, Pyun J. Polym. Chem. 2019; 10: 4078
  • 22 Worthington MJ. H, Kucera RL, Chalker JM. Green Chem. 2017; 19: 2748
  • 23 Chalker JM, Worthington MJ. H, Lundquist NA, Esdaile LJ. Top. Curr. Chem. 2019; 377: 16
  • 24 Zhang Y, Griebel JJ, Dirlam PT, Nguyen NA, Glass RS, Mackay ME, Char K, Pyun J. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 107
  • 25 Park S, Lee D, Cho H, Lim J, Char K. ACS Macro Lett. 2019; 8: 1670
  • 26 Orme K, Fistrovich AH, Jenkins CL. Macromolecules 2020; 53: 9353
  • 27 Wu X, Smith JA, Petcher S, Zhang B, Parker DJ, Griffin JM, Hasell T. Nat. Commun. 2019; 10: 647
  • 28 Shankarayya Wadi VK, Jena KK, Khawaja SZ, Yannakopoulou K, Fardis M, Mitrikas G, Karagianni M, Papavassiliou G, Alhassan SM. ACS Omega 2018; 3: 3330
  • 29 Tonkin SJ, Gibson CT, Campbell JA, Lewis DA, Karton A, Hasell T, Chalker JM. Chem. Sci. 2020; 11: 5537
  • 30 Scheiger JM, Direksilp C, Falkenstein P, Welle A, Koenig M, Heissler S, Matysik J, Levkin PA, Theato P. Angew. Chem. Int. Ed. 2020; 59: 18639
  • 31 Zhang Y, Pavlopoulos NG, Kleine TS, Karayilan M, Glass RS, Char K, Pyun J. J. Polym. Sci. Part A: Polym. Chem. 2019; 57: 7
  • 32 Smith JA, Green SJ, Petcher S, Parker DJ, Zhang B, Worthington MJ. H, Wu X, Kelly CA, Baker T, Gibson CT, Campbell JA, Lewis DA, Jenkins MJ, Willcock H, Chalker JM, Hasell T. Chem. Eur. J. 2019; 25: 10433
  • 33 Kleine TS, Nguyen NA, Anderson LE, Namnabat S, LaVilla EA, Showghi SA, Dirlam PT, Arrington CB, Manchester MS, Schwiegerling J, Glass RS, Char K, Norwood RA, Mackay ME, Pyun J. ACS Macro Lett. 2016; 5: 1152
  • 34 Griebel JJ, Namnabat S, Kim ET, Himmelhuber R, Moronta DH, Chung WJ, Simmonds AG, Kim K.-J, van der Laan J, Nguyen NA, Dereniak EL, Mackay ME, Char K, Glass RS, Norwood RA, Pyun J. Adv. Mater. 2014; 26: 3014
  • 35 Boyd DA, Nguyen VQ, McClain CC, Kung FH, Baker CC, Myers JD, Hunt MP, Kim W, Sanghera JS. ACS Macro Lett. 2019; 8: 113
  • 36 Kleine TS, Glass RS, Lichtenberger DL, Mackay ME, Char K, Norwood RA, Pyun J. ACS Macro Lett. 2020; 9: 245
  • 37 Griebel JJ, Nguyen NA, Namnabat S, Anderson LE, Glass RS, Norwood RA, MacKay ME, Char K, Pyun J. ACS Macro Lett. 2015; 4: 862
  • 38 Xin Y, Peng H, Xu J, Zhang J. Adv. Funct. Mater. 2019; 29: 1808989
  • 39 Lundquist NA, Worthington MJ. H, Adamson N, Gibson CT, Johnston MR, Ellis AV, Chalker JM. RSC Adv. 2018; 8: 1232
  • 40 Worthington MJ. H, Shearer CJ, Esdaile LJ, Campbell JA, Gibson CT, Legg SK, Yin Y, Lundquist NA, Gascooke JR, Albuquerque IS, Shapter JG, Andersson GG, Lewis DA, Bernardes GJ. L, Chalker JM. Adv. Sustainable Syst. 2018; 1800024
  • 41 Karunarathna MS, Lauer MK, Thiounn T, Smith RC, Tennyson AG. J. Mater. Chem. A 2019; 7: 15683
  • 42 Lopez CV, Karunarathna MS, Lauer MK, Maladeniya CP, Thiounn T, Ackley ED, Smith RC. J. Polym. Sci. 2020; 58: 2259
  • 43 Lundquist NA, Tikoalu AD, Worthington MJ. H, Shapter R, Tonkin SJ, Stojcevski F, Mann M, Gibson CT, Gascooke JR, Karton A, Henderson LC, Esdaile LJ, Chalker JM. Chem. Eur. J. 2020; 26: 10035
  • 44 Bu Najmah I, Lundquist NA, Stanfield MK, Stojcevski F, Campbell JA, Esdaile LJ, Gibson CT, Lewis DA, Henderson LC, Hasell T, Chalker JM. ChemSusChem 2021; 14: 2353
  • 45 Mann M, Kruger JE, Andari F, McErlean J, Gascooke JR, Smith JA, Worthington MJ. H, McKinley CC. C, Campbell JA, Lewis DA, Hasell T, Perkins MV, Chalker JM. Org. Biomol. Chem. 2019; 17: 1929
  • 46 Fortuna do Valle S, Giroto AS, Reis HP. G, Guimarães GG. F, Ribeiro C. J. Agric. Food. Chem. 2021; 69: 2392
  • 47 Herrera C, Ysinga KJ, Jenkins CL. ACS Appl. Mater. Interfaces 2019; 11: 35312
  • 48 Abraham AM, Kumar SV, Alhassan SM. Chem. Eng. J. 2018; 332: 1
  • 49 Wadi VS, Jena KK, Khawaja SZ, Ranagraj VM, Alhassan SM. RSC Adv. 2019; 9: 4397
  • 50 Yan P, Zhao W, Zhang B, Jiang L, Petcher S, Smith JA, Parker DJ, Cooper AI, Lei J, Hasell T. Angew. Chem. Int. Ed. 2020; 59: 13371
  • 51 Lee J.-S. M, Parker DJ, Cooper AI, Hasell T. J. Mater. Chem. A 2017; 5: 18603
  • 52 Deng Z, Hoefling A, Theato P, Lienkamp K. Macromol. Chem. Phys. 2018; 219: 1700497
  • 53 Smith JA, Mulhall R, Goodman S, Fleming G, Allison H, Raval R, Hasell T. ACS Omega 2020; 5: 5229
  • 54 Crockett MP, Evans AM, Worthington MJ. H, Chalker JM. Sulfur-Limonene Polysulfide. US Patent 10,590,012, 2020. Priority date 13 Oct 2015
  • 55 Lin H.-K, Lai Y.-S, Liu Y.-L. ACS Sustainable Chem. Eng. 2019; 7: 4515
  • 56 Petcher S, Parker DJ, Hasell T. Environ. Sci. Water Res. Technol. 2019; 5: 2142
  • 57 Wadi VS, Mittal H, Fosso-Kankeu E, Jena KK, Alhassan SM. Colloids Surf., A 2020; 606: 125333
  • 58 Xue J, Wu T, Dai Y, Xia Y. Chem. Rev. 2019; 119: 5298
  • 59 Greiner A, Wendorff JH. Angew. Chem. Int. Ed. 2007; 46: 5670
  • 60 Thielke MW, Bultema LA, Brauer DD, Richter B, Fischer M, Theato P. Polymers 2016; 8: 266
  • 61 Lee J, Lee S, Kim J, Hanif Z, Han S, Hong S, Yoon M.-H. Bull. Korean Chem. Soc. 2018; 39: 84
  • 62 Limjuco LA, Nisola GM, Parohinog KJ, Valdehuesa KN. G, Lee S.-P, Kim H, Chung W.-J. Chem. Eng. J. 2019; 378: 122216
  • 63 Limjuco LA, Fissaha HT, Kim H, Nisola GM, Chung W.-J. ACS Appl. Polym. Mater. 2020; 2: 4677
  • 64 Akay S, Kayan B, Kalderis D, Arslan M, Yagci Y, Kiskan B. J. Appl. Polym. Sci. 2017; 134: 45306
  • 65 Parker DJ, Chong ST, Hasell T. RSC Adv. 2018; 8: 27892
  • 66 Tikoalu AD, Lundquist NA, Chalker JM. Adv. Sustainable Syst. 2020; 4: 1900111
  • 67 Chen Y, Yasin A, Zhang Y, Zan X, Liu Y, Zhang L. Materials 2020; 13: 632
  • 68 Zhang Y, Konopka KM, Glass RS, Char K, Pyun J. Polym. Chem. 2017; 8: 5167
  • 69 Westerman CR, Jenkins CL. Macromolecules 2018; 51: 7233
  • 70 Rollinson AN, Bhuptani J, Beyer J, Ismawati Y, Radu T. Int. J. Phytoremediation 2020; 22: 1431
  • 71 Fu Y, Yang C, Zheng Y, Jiang J, Sun Y, Chen F, Hu J. J. Mol. Liq. 2021; 328: 115420
  • 72 Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D. Environ. Pollut. 2004; 131: 323
  • 73 Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. Environ. Toxicol. 2003; 18: 149
  • 74 Thiounn T, Tennyson AG, Smith RC. RSC Adv. 2019; 9: 31460
  • 75 Fuhrmann M, Melamed D, Kalb PD, Adams JW, Milian LW. Waste Manage. 2002; 22: 327
  • 76 López-Delgado A, Guerrero A, López FA, Perez C, Alguacil FJ. Rev. Metal. 2012; 48: 58
  • 77 Rodríguez O, Padilla I, Tayibi H, López-Delgado A. J. Environ. Manage. 2012; 101: 197
  • 78 López FA, Alguacil FJ, Rodríguez O, Sierra MJ, Millán R. Waste Manage. 2015; 35: 301
  • 79 Lundquist NA, Chalker JM. Sustainable Mater. Technol. 2020; 26: e00222