CC BY-NC-ND 4.0 · Synthesis 2021; 53(16): 2713-2739
DOI: 10.1055/a-1493-6331
review

Applications of the Horner–Wadsworth–Emmons Olefination in Modern Natural Product Synthesis

,
Maria Sauer
,
We greatly acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Project: 802736 MORPHEUS) and Boehringer Ingelheim Stiftung (Exploration Grant Engina).


Abstract

The Horner–Wadsworth–Emmons (HWE) reaction is one of the most reliable olefination reaction and can be broadly applied in organic chemistry and natural product synthesis with excellent selectivity. Within the last few years HWE reaction conditions have been optimized and new reagents developed to overcome challenges in the total syntheses of natural products. This review highlights the application of HWE olefinations in total syntheses of structurally different natural products covering 2015 to 2020. Applied HWE reagents and reactions conditions are highlighted to support future synthetic approaches and serve as guideline to find the best HWE conditions for the most complicated natural products.

1 Introduction and Historical Background

2 Applications of HWE

2.1 Cyclization by HWE Reactions

2.2.1 Formation of Medium- to Larger-Sized Rings

2.2.2 Formation of Small- to Medium-Sized Rings

2.3 Synthesis of α,β-Unsaturated Carbonyl Groups

2.4 Synthesis of Substituted C=C Bonds

2.5 Late-Stage Modifications by HWE Reactions

2.6 HWE Reactions on Solid Supports

2.7 Synthesis of Poly-Conjugated C=C Bonds

2.8 HWE-Mediated Coupling of Larger Building Blocks

2.9 Miscellaneous

3 Summary and Outlook



Publikationsverlauf

Eingereicht: 20. Januar 2021

Angenommen nach Revision: 28. April 2021

Accepted Manuscript online:
28. April 2021

Artikel online veröffentlicht:
24. Juni 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wittig G, Haag W. Chem. Ber. 1955; 88: 1654
    • 2a Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
    • 2b Byrne PA, Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670
    • 2c Rocha DH, Pinto DC, Silva AM. Eur. J. Org. Chem. 2018; 2018: 2443
    • 2d Heravi MM, Ghanbarian M, Zadsirjan V, Jani AB. Monatsh. Chem. 2019; 150: 1365
  • 3 Horner L, Hoffmann H, Wippel HG. Chem. Ber. 1958; 91: 61
  • 4 Wadsworth WS, Emmons WD. J. Am. Chem. Soc. 1961; 83: 1733
  • 5 Still WC, Gennari C. Tetrahedron Lett. 1983; 24: 4405
  • 6 Janicki I, Kiełbasiński P. Adv. Synth. Catal. 2020; 362: 2552
  • 8 Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T. Tetrahedron Lett. 1984; 25: 2183
  • 9 Rathke MW, Nowak M. J. Org. Chem. 1985; 50: 2624
  • 10 Pascariu A, Ilia G, Bora A, Bora A, Iliescu S, Popa A, Dehelean G, Pacureanu L. Cent. Eur. J. Chem. 2003; 1: 491
    • 11a Teichert A, Jantos K, Harms K, Studer A. Org. Lett. 2004; 6: 3477
    • 11b Schauer DJ, Helquist P. Synthesis 2006; 3654
    • 12a Sano S, Yokoyama K, Teranishi R, Shiro M, Nagao Y. Tetrahedron Lett. 2002; 43: 281
    • 12b Sano S, Abe S, Azetsu T, Nakao M, Shiro M, Nagao Y. Lett. Org. Chem. 2006; 3: 798
    • 13a Julia M, Paris J.-M. Tetrahedron Lett. 1973; 14: 4833
    • 13b Blakemore PR, Sephton SM, Ciganek E. Org. React. (N. Y.) 2018; 95: 1-422
    • 15a Mikołajczyk M, Midura WH, Mohamed Ewas AM, Perlikowska W, Mikina M, Jankowiak A. Phosphorus, Sulfur Silicon Relat. Elem. 2008; 183: 313
    • 15b Bisceglia JA, Orelli LR. Curr. Org. Chem. 2012; 16: 2206
    • 15c Bisceglia JA, Orelli LR. Curr. Org. Chem. 2015; 19: 744
    • 15d Kobayashi K, Tanaka K, Kogen H. Tetrahedron Lett. 2018; 59: 568
  • 16 Nicolaou K, Das D, Lu Y, Rout S, Pitsinos EN, Lyssikatos J, Schammel A, Sandoval J, Hammond M, Aujay M. J. Am. Chem. Soc. 2020; 142: 2549
  • 17 Márquez-Cadena MA, Ren J, Ye W, Qian P, Tong R. Org. Lett. 2019; 21: 9704
  • 18 Shimoda K, Yamaoka Y, Yoo D, Yamada K.-i, Takikawa H, Takasu K. J. Org. Chem. 2019; 84: 11014
  • 19 Scheeff S, Menche D. Org. Lett. 2019; 21: 271
  • 20 Lee S, Kang G, Chung G, Kim D, Lee H.-Y, Han S. Angew. Chem. Int. Ed. 2020; 59: 6894
  • 21 Gajula S, Reddy AV. V, Reddy DP, Yadav JS, Mohapatra DK. ACS Omega 2020; 5: 10217
  • 22 AnkiReddy P, AnkiReddy S, Gowravaram S. Org. Biomol. Chem. 2018; 16: 4191
  • 23 Boeckman RK. Jr, Wang H, Rugg KW, Genung NE, Chen K, Ryder TR. Org. Lett. 2016; 18: 6136
  • 24 Raji Reddy C, Mohammed SZ, Gaddam K, Prapurna YL. Synth. Commun. 2019; 49: 1153
  • 25 Kim JH, Kim I, Song Y, Kim MJ, Kim S. Angew. Chem. Int. Ed. 2019; 58: 11018
  • 26 Boyko YD, Huck CJ, Sarlah D. J. Am. Chem. Soc. 2019; 141: 14131
  • 27 Poock C, Kalesse M. Org. Lett. 2017; 19: 4536
  • 28 Bruckner S, Weise M, Schobert R. J. Org. Chem. 2018; 83: 10805
  • 29 Das S, Goswami RK. Org. Biomol. Chem. 2017; 15: 4842
  • 30 Sakai T, Fukuta A, Nakamura K, Nakano M, Mori Y. J. Org. Chem. 2016; 81: 3799
  • 31 Brumley DA, Gunasekera SP, Chen Q.-Y, Paul VJ, Luesch H. Org. Lett. 2020; 22: 4235
  • 32 Dash U, Sengupta S, Sim T. Eur. J. Org. Chem. 2015; 2015: 3963
  • 33 Yang L, Lin Z, Shao S, Zhao Q, Hong R. Angew. Chem. Int. Ed. 2018; 57: 16200
  • 34 Long X, Ding Y, Deng J. Angew. Chem. Int. Ed. 2018; 57: 14221
  • 35 Nicolaou K, Shelke YG, Dherange BD, Kempema A, Lin B, Gu C, Sandoval J, Hammond M, Aujay M, Gavrilyuk J. J. Org. Chem. 2020; 85: 2865
  • 36 Saha D, Guchhait S, Goswami RK. Org. Lett. 2020; 22: 745
  • 37 Pakhare D, Kusurkar R. New J. Chem. 2016; 40: 5428
  • 38 Chinthakindi PK, Nandi GC, Govender T, Kruger HG, Naicker T, Arvidsson PI. Synlett 2016; 27: 1423
    • 39a Stork G, Nakamura E. J. Org. Chem. 1979; 44: 4010
    • 39b Nangia A, Prasuna G, Bheema Rao P. Tetrahedron Lett. 1994; 35: 3755
  • 40 Stork G, Matthews R. J. Chem. Soc. D 1970; 445
    • 41a Nicolaou KC, Seitz SP, Pavia MR, Petasis NA. J. Org. Chem. 1979; 44: 4011
    • 41b Still WC, Novack V. J. Am. Chem. Soc. 1984; 106: 1148
    • 41c Still WC, Gennari C, Noguez JA, Pearson DA. J. Am. Chem. Soc. 1984; 106: 260
    • 41d Morin-Fox ML, Lipton MA. Tetrahedron Lett. 1993; 34: 7899
  • 42 Gourves J.-P, Couthon H, Sturtz G. Eur. J. Org. Chem. 1999; 1999: 3489
    • 43a Meyers AI, Comins DL, Roland DM, Henning R, Shimizu K. J. Am. Chem. Soc. 1979; 101: 7104
    • 43b Tius MA, Fauq AH. J. Am. Chem. Soc. 1986; 108: 1035
    • 43c Tius MA, Fauq A. J. Am. Chem. Soc. 1986; 108: 6389
    • 43d Marshall JA, DeHoff BS. Tetrahedron 1987; 43: 4849
    • 43e Smith AB, Rano TA, Chida N, Sulikowski GA, Wood JL. J. Am. Chem. Soc. 1992; 114: 8008
    • 43f Zhang J, Xu X. Tetrahedron Lett. 2000; 41: 941
    • 44a Wessjohann LA, Ruijter E, Garcia-Rivera D, Brandt W. Mol. Diversity 2005; 9: 171
    • 44b Swinney DC, Anthony J. Nat. Rev. Drug Discovery 2011; 10: 507
    • 44c Madsen CM, Clausen MH. Eur. J. Org. Chem. 2011; 2011: 3107
    • 44d Mallinson J, Collins I. Future Med. Chem. 2012; 4: 1409
    • 44e Yu X, Sun D. Molecules 2013; 18: 6230
    • 44f Giordanetto F, Kihlberg J. J. Med. Chem. 2014; 57: 278
    • 44g Newman DJ, Cragg GM. Bioactive Macro­cycles from Nature . In Macrocycles in Drug Discovery; Chap. 1 . RSC; Cambridge: 2015: 1
    • 44h Mortensen KT, Osberger TJ, King TA, Sore HF, Spring DR. Chem. Rev. 2019; 119: 10288
  • 45 Scherlach K, Boettger D, Remme N, Hertweck C. Nat. Prod. Rep. 2010; 27: 869
    • 46a Schofield J. Nat. New Biol. 1971; 234: 215
    • 46b Turner WB, Carter SB. Biochem. J. 1972; 127: 1P
    • 46c Crivello JF, Jefcoate CR. Biochim. Biophys. Acta, Gen. Subj. 1978; 542: 315
    • 46d Hu Y, Zhang W, Zhang P, Ruan W, Zhu X. J. Agric. Food Chem. 2013; 61: 41
    • 46e Hua C, Yang Y, Sun L, Dou H, Tan R, Hou Y. Immunobiology 2013; 218: 292
  • 47 Stork G, Nakamura E. J. Am. Chem. Soc. 1983; 105: 5510
  • 48 Stork G, Nakahara Y, Nakahara Y, Greenlee W. J. Am. Chem. Soc. 1978; 100: 7775
  • 49 Thomas EJ, Whitehead JW. F. J. Chem. Soc., Chem. Commun. 1986; 727
  • 50 Merifield E, Thomas EJ. J. Chem. Soc., Perkin Trans. 1 1999; 3269
  • 51 Thomas EJ, Willis M. Org. Biomol. Chem. 2014; 12: 7537
  • 52 Trost BM, Ohmori M, Boyd SA, Okawara H, Brickner SJ. J. Am. Chem. Soc. 1989; 111: 8281
  • 53 Reyes JR, Winter N, Spessert L, Trauner D. Angew. Chem. Int. Ed. 2018; 57: 15587
  • 54 Draskovits M, Stanetty C, Baxendale IR, Mihovilovic MD. J. Org. Chem. 2018; 83: 2647
  • 55 Enders D, Geibel G, Osborne S. Chem. Eur. J. 2000; 6: 1302
  • 56 Zaghouani M, Kunz C, Guédon L, Blanchard F, Nay B. Chem. Eur. J. 2016; 22: 15257
  • 57 Forsyth CJ, Ahmed F, Cink RD, Lee CS. J. Am. Chem. Soc. 1998; 120: 5597
  • 58 Haidle AM, Myers AG. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12048
  • 59 Larsen BJ, Sun Z, Nagorny P. Org. Lett. 2013; 15: 2998
    • 60a Zhanel GG, Dueck M, Hoban DJ, Vercaigne LM, Embil JM, Gin AS, Karlowsky JA. Drugs 2001; 61: 443
    • 60b Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A, Embil JM, Gin AS, Douthwaite S, Hoban DJ. Drugs 2002; 62: 1771
    • 60c Cui W, Ma S. Mini-Rev. Med. Chem. 2011; 11: 1009
    • 60d Arsic B, Barber J, Čikoš A, Mladenovic M, Stankovic N, Novak P. Int. J. Antimicrob. Agents 2018; 51: 283
  • 61 Liu S, Dai H, Makhloufi G, Heering C, Janiak C, Hartmann R, Mándi A, Kurtán T, Müller WE, Kassack MU, Lin W, Liu Z, Proksch P. J. Nat. Prod. 2016; 79: 2332
  • 62 Paul D, Saha S, Goswami RK. Org. Lett. 2018; 20: 4606
  • 63 Dias LC, de Lucca EC. J. Org. Chem. 2017; 82: 3019
    • 64a Takai K, Nitta K, Utimoto K. J. Am. Chem. Soc. 1986; 108: 7408
    • 64b Okazoe T, Takai K, Utimoto K. J. Am. Chem. Soc. 1987; 109: 51
    • 65a Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
    • 65b Kawanami Y, Dainobu Y, Inanaga J, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn. 1981; 54: 943
  • 66 Clarke AK, Unsworth WP. Chem. Sci. 2020; 11: 2876
  • 67 Hubert JG, Furkert DP, Brimble MA. J. Org. Chem. 2015; 80: 2231
    • 68a Wang W, Mun B, Lee Y, Venkat Reddy M, Park Y, Lee J, Kim H, Hahn D, Chin J, Ekins M, Nam S.-J, Kang H. J. Nat. Prod. 2013; 76: 170
    • 68b Hubert JG, Furkert DP, Brimble MA. J. Org. Chem. 2015; 80: 2715
  • 69 Saya JM, Vos K, Kleinnijenhuis RA, van Maarseveen JH, Ingemann S, Hiemstra H. Org. Lett. 2015; 17: 3892
    • 70a Jeon S, Han S. J. Am. Chem. Soc. 2017; 139: 6302
    • 70b Wang Y, Chen B, He X, Gui J. J. Am. Chem. Soc. 2020; 142: 5007
    • 71a Chirkin E, Atkatlian W, Porée F.-H. The Securinega Alkaloids . In The Alkaloids: Chemistry and Biology, Vol. 74, Chap. 1. Knölker H.-J. Academic Press; San Diego: 2015: 1
    • 71b Zhang H, Zhang C.-R, Han Y.-S, Wainberg MA, Yue J.-M. RSC Adv. 2015; 5: 107045
    • 71c Park KJ, Kim CS, Khan Z, Oh J, Kim SY, Choi SU, Lee KR. J. Nat. Prod. 2019; 82: 1345
  • 72 Xie P, Huang Y. Eur. J. Org. Chem. 2013; 28: 6213
    • 73a Cimmino A, Andolfi A, Fondevilla S, Abouzeid MA, Rubiales D, Evidente A. J. Agric. Food Chem. 2012; 60: 5273
    • 73b Yadav JS, Avuluri S, Kattela SS, Das S. Eur. J. Org. Chem. 2013; 2013: 6967
    • 73c Jangili P, Kumar CG, Poornachandra Y, Das B. Synthesis 2015; 47: 653
  • 74 Shelke AM, Suryavanshi G. Tetrahedron: Asymmetry 2016; 27: 142
  • 75 Kobayashi J.-i, Watanabe D, Kawasaki N, Tsuda MJ. J. Org. Chem. 1997; 62: 9236
    • 76a Sakai R, Higa T, Jefford CW, Bernardinelli GJ. J. Am. Chem. Soc. 1986; 108: 6404
    • 76b Ashok P, Ganguly S, Murugesan S. Drug Discovery Today 2014; 19: 1781
    • 76c Ashok P, Lathiya H, Murugesan S. Eur. J. Med. Chem. 2015; 97: 928
    • 76d Kondo K, Shigemori H, Kikuchi Y, Ishibashi M, Sasaki T, Kobayashi J. J. Org. Chem. 1992; 57: 2480
  • 77 Hovey MT, Cohen DT, Walden DM, Cheong PH.-Y, Scheidt KA. Angew. Chem. Int. Ed. 2017; 56: 9864
    • 78a Lumyong K, Kongkathip B, Chuanopparat N, Kongkathip N. Tetrahedron 2019; 75: 533
    • 78b Fitch RW, Garraffo HM, Spande TF, Yeh HJ, Daly JW. J. Nat. Prod. 2003; 66: 1345
    • 79a Raluy E, Pàmies O, Dieguez M. Adv. Synth. Catal. 2009; 351: 1648
    • 79b Kongkathip B, Akkarasamiyo S, Kongkathip N. Tetrahedron 2015; 71: 2393
  • 80 Fulton MG, Bertron JL, Reed CW, Lindsley CW. J. Org. Chem. 2019; 84: 12187
  • 81 Zhang D, Tao X, Chen R, Liu J, Li L, Fang X, Yu L, Dai J. Org. Lett. 2015; 17: 4304
  • 82 Lücke D, Linne Y, Hempel K, Kalesse M. Org. Lett. 2018; 20: 4475
  • 83 Gao S.-S, Li X.-M, Du F.-Y, Li C.-S, Proksch P, Wang B.-G. Mar. Drugs 2011; 9: 59
  • 84 Sato S, Iwata F, Mukai T, Yamada S, Takeo J, Abe A, Kawahara H. J. Org. Chem. 2009; 74: 5502
  • 85 Hu N, Dong C, Zhang C, Liang G. Angew. Chem. Int. Ed. 2019; 58: 6659
  • 86 Nicolaou K, Wang Y, Lu M, Mandal D, Pattanayak MR, Yu R, Shah AA, Chen JS, Zhang H, Crawford JJ. J. Am. Chem. Soc. 2016; 138: 8235
    • 87a Ley SV, Baxendale IR, Bream RN, Jackson PS, Leach AG, Longbottom DA, Nesi M, Scott JS, Storer RI, Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000; 3815
    • 87b Solinas A, Taddei M. Synthesis 2007; 2409
  • 88 Johnson CR, Zhang B. Tetrahedron Lett. 1995; 36: 9253
  • 89 Barrett AG. M, Cramp SM, Roberts RS, Zecri FJ. Org. Lett. 1999; 1: 579
  • 90 Nicolaou KC, Pastor J, Winssinger N, Murphy F. J. Am. Chem. Soc. 1998; 120: 5132
  • 91 Salvino JM, Kiesow TJ, Darnbrough S, Labaudiniere R. J. Comb. Chem. 1999; 1: 134
    • 92a Wipf P, Henninger TC. J. Org. Chem. 1997; 62: 1586
    • 92b Boldi AM, Johnson CR, Eissa HO. Tetrahedron Lett. 1999; 40: 619
    • 93a Martina SL. X, Taylor RJ. K. Tetrahedron Lett. 2004; 45: 3279
    • 93b Ando K, Suzuki Y. Tetrahedron Lett. 2010; 51: 2323
  • 94 Jin YZ, Yasuda N, Inanaga J. Green Chem. 2002; 4: 498
  • 95 Popa A, Avram E, Lisa G, Visa A, Iliescu S, Parvulescu V, Ilia G. Polym. Eng. Sci. 2012; 52: 352
  • 96 Roman D, Raguž L, Keiff F, Meyer F, Barthels F, Schirmeister T, Kloss F, Beemelmanns C. Org. Lett. 2020; 22: 3744
  • 97 Rischer M, Raguž L, Guo H, Keiff F, Diekert G, Goris T, Beemelmanns C. ACS Chem. Biol. 2018; 13: 1990
  • 98 Fuson RC. Chem. Rev. 1935; 16: 1
    • 99a Masuda T, Osako K, Shimizu T, Nakata T. Org. Lett. 1999; 1: 941
    • 99b Barth R, Mulzer J. Angew. Chem. Int. Ed. 2007; 46: 5791
    • 99c Denmark SE, Regens CS, Kobayashi T. J. Am. Chem. Soc. 2007; 129: 2774
    • 99d Sirasani G, Paul T, Andrade RB. J. Org. Chem. 2008; 73: 6386
    • 100a Fadeyi OO, Lindsley CW. Org. Lett. 2009; 11: 3950
    • 100b Takamura H, Kikuchi S, Nakamura Y, Yamagami Y, Kishi T, Kadota I, Yamamoto Y. Org. Lett. 2009; 11: 2531
    • 100c Chakor NS, Musso L, Dallavalle S. J. Org. Chem. 2009; 74: 844
    • 100d Geerdink D, Buter J, van Beek TA, Minnaard AJ. Beilstein J. Org. Chem. 2014; 10: 761
  • 101 Schmidt K, Riese U, Li Z, Hamburger M. J. Nat. Prod. 2003; 66: 378
  • 102 Zhang J, Meng L.-L, Wei J.-J, Fan P, Liu S.-S, Yuan W.-Y, Zhao Y.-X, Luo D.-Q. Molecules 2017; 22: 2058
  • 103 Loscher S, Schobert R. Chem. Eur. J. 2013; 19: 10619
  • 104 Gerstmann L, Kalesse M. Chem. Eur. J. 2016; 22: 11210
  • 105 Herrmann AT, Martinez SR, Zakarian A. Org. Lett. 2011; 13: 3636
  • 106 Gehringer M, Mäder P, Gersbach P, Pfeiffer B, Scherr N, Dangy J.-P, Pluschke G, Altmann K.-H. Org. Lett. 2019; 21: 5853
  • 107 Bieri R, Scherr N, Ruf M.-T, Dangy J.-P, Gersbach P, Gehringer M, Altmann K.-H, Pluschke G. ACS Chem. Biol. 2017; 12: 1297
  • 108 McKenna M, Simmonds RE, High S. J. Cell Sci. 2016; 129: 1404
  • 109 Chany A.-C, Veyron-Churlet R, Tresse C, Mayau V, Casarotto V, Le Chevalier F, Guenin-Macé L, Demangel C, Blanchard N. J. Med. Chem. 2014; 57: 7382
  • 110 Marion E, Song O.-R, Christophe T, Babonneau J, Fenistein D, Eyer J, Letournel F, Henrion D, Clere N, Paille V. Cell 2014; 157: 1565
  • 111 Zhang Z, He X, Zhang G, Che Q, Zhu T, Gu Q, Li D. J. Nat. Prod. 2017; 80: 3167
  • 112 Mandal GH, Saha D, Goswami RK. Org. Biomol. Chem. 2020; 18: 2346
  • 113 Blakemore PR, Cole WJ, Kocienski P, Morley A. Synlett 1998; 26
  • 114 Seki M, Mori K. Eur. J. Org. Chem. 2001; 2001: 503
  • 115 Bae M, Kim H, Shin Y, Kim BY, Lee SK, Oh K.-B, Shin J, Oh D.-C. Mar. Drugs 2013; 11: 2882
    • 116a Angelov P, Chau YK. S, Fryer PJ, Moloney MG, Thompson AL, Trippier PC. Org. Biomol. Chem. 2012; 10: 3472
    • 116b Josa-Culleré L, Towers C, Willenbrock F, Macaulay VM, Christensen KE, Moloney MG. Org. Biomol. Chem. 2017; 15: 5373
  • 117 Onyango EO, Tsurumoto J, Imai N, Takahashi K, Ishihara J, Hatakeyama S. Angew. Chem. Int. Ed. 2007; 46: 6703
  • 118 Nakamura Y, Kato H, Nishikawa T, Iwasaki N, Suwa Y, Rotinsulu H, Losung F, Maarisit W, Mangindaan RE. P, Morioka H, Yokosawa H, Tsukamoto S. Org. Lett. 2013; 15: 322
  • 119 Yoshida M, Saito K, Kato H, Tsukamoto S, Doi T. Angew. Chem. Int. Ed. 2018; 57: 5147
    • 120a Tischer M, Pradel G, Ohlsen K, Holzgrabe U. ChemMedChem 2012; 7: 22
    • 120b Petkowski JJ, Bains W, Seager S. J. Nat. Prod. 2018; 81: 423
  • 121 Scherlach K, Partida-Martinez LP, Dahse H.-M, Hertweck C. J. Am. Chem. Soc. 2006; 128: 11529
    • 122a Iwasaki S, Kobayashi H, Furukawa J, Namikoshi M, Okuda S, Sato Z, Matsuda I, Noda T. J. Antibiot. 1984; 37: 354
    • 122b Tsuruo T, Oh-hara T, Iida H, Tsukagoshi S, Sato Z, Matsuda I, Iwasaki S, Okuda S, Shimizu F, Sasagawa K. Cancer Res. 1986; 46: 381
    • 122c Takahashi M, Iwasaki S, Kobayashi H, Okuda S, Murai T, Sato Y, Haraguchi-Hiraoka T, Nagano H. J. Antibiot. 1987; 40: 66
  • 123 Karier P, Ungeheuer F, Ahlers A, Anderl F, Wille C, Fürstner A. Angew. Chem. Int. Ed. 2019; 58: 248
  • 124 Lu C.-K, Chen Y.-M, Wang S.-H, Wu Y.-Y, Cheng Y.-M. Tetrahedron Lett. 2009; 50: 1825
    • 125a Srinivas B, Reddy DS, Mallampudi NA, Mohapatra DK. Org. Lett. 2018; 20: 6910
    • 125b Mallampudi NA, Srinivas B, Reddy JG, Mohapatra DK. Org. Lett. 2019; 21: 5952
  • 126 Ohta S, Uy MM, Yanai M, Ohta E, Hirata T, Ikegami S. Tetrahedron Lett. 2006; 47: 1957
    • 127a Crane EA, Zabawa TP, Farmer RL, Scheidt KA. Angew. Chem. Int. Ed. 2011; 50: 9112
    • 127b Fuwa H, Suzuki T, Kubo H, Yamori T, Sasaki M. Chem. Eur. J. 2011; 17: 2678
    • 127c Fuwa H, Mizunuma K, Sasaki M, Suzuki T, Kubo H. Org. Biomol. Chem. 2013; 11: 3442
  • 128 Fuwa H, Sasaki M. Org. Lett. 2010; 12: 584
    • 129a Cook C, Guinchard X, Liron F, Roulland E. Org. Lett. 2010; 12: 744
    • 129b Reddy CR, Rao NN. Tetrahedron Lett. 2010; 51: 5840
    • 129c Cook C, Liron F, Guinchard X, Roulland E. J. Org. Chem. 2012; 77: 6728
    • 129d Zhang Z, Xie H, Li H, Gao L, Song Z. Org. Lett. 2015; 17: 4706
    • 129e Zhang Y, Lu J, Li H, Sun X, Gao L, Song Z. Synlett 2019; 30: 753
  • 130 Oka K, Fuchi S, Komine K, Fukuda H, Hatakeyama S, Ishihara J. Chem. Eur. J. 2020; 26: 12862
  • 131 Baker BA, Bošković ŽV, Lipshutz BH. Org. Lett. 2008; 10: 289
  • 132 Lewis MD, Cha JK, Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
  • 133 Guo L.-D, Hou J, Tu W, Zhang Y, Zhang Y, Chen L, Xu J. J. Am. Chem. Soc. 2019; 141: 11713
  • 134 Guo L.-D, Hu J, Zhang Y, Tu W, Zhang Y, Pu F, Xu J. J. Am. Chem. Soc. 2019; 141: 13043
  • 135 Choi JH, Lim HJ. Org. Biomol. Chem. 2015; 13: 5131
  • 136 Iwanejko J, Sowiński M, Wojaczyńska E, Olszewski TK, Górecki M. RSC Adv. 2020; 10: 14618