CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 309-320
DOI: 10.1055/a-1491-4818
Focus Issue: Supramolecular Optoelectronic Materials
Short Review

Solvent-Free Conjugated Polymer Fluids with Optical Functions

a  Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan, Shenzhen 518055, China
,
a  Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan, Shenzhen 518055, China
b  Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
,
a  Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan, Shenzhen 518055, China
,
a  Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan, Shenzhen 518055, China
b  Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
c  International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
› Author Affiliations
Funding Information This study was supported by Grants-in-Aid for Scientific Research (JSPS KAKENHI Grant Number JP18H03922).


Abstract

Solvent-free fluidic materials possessing optoelectronic functions are expected to be major components in soft electronics applications. Conjugated polymers are promising targets for this purpose and their design approaches are classified into three types with respect to their structure: conjugation breaking (Type I), copolymerization with flexible polymers (Type II), and side chain engineering (Type III). In this short review, we highlight several early attempts to produce Type III conjugated polymers. We also present fully characterized Type III fluids recently developed by our group, with a brief summary of the structure–property relationship and fluidity-oriented functions.

Introduction

1 Polymer Design

1.1 Fluidity of Polymeric Materials

1.2 Type III CPs with T g < 25 °C

1.3 Fluidification of Polyfluorenes

1.4 Effect of Side Chain Length

2 Fluidity-Oriented Functions

2.1 Mechanofluorochromism

2.2 Consistent Luminescence in Wide Range of Elastic Moduli

2.3 Prediction of Viscoelasticity

Conclusions and Outlook



Publication History

Received: 31 March 2021

Accepted: 23 April 2021

Publication Date:
26 April 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ghosh A, Yoshida M, Suemori K, Isago H, Kobayashi N, Mizutani Y, Kurashige Y, Kawamura I, Nirei M, Yamamuro O, Takaya T, Iwata K, Saeki A, Nagura K, Ishihara S, Nakanishi T. Nat. Commun. 2019; 10: 4210
  • 2 Michinobu T, Nakanishi T, Hill JP, Funahashi M, Ariga K. J. Am. Chem. Soc. 2006; 128: 10384
  • 3 Hollamby MJ, Karny M, Bomans PH. H, Sommerdijk NA, Saeki A, Seki S, Minamikawa H, Grillo I, Pauw BR, Brown P, Eastoe J, Möhwald H, Nakanishi T. Nat. Chem. 2014; 6: 690
  • 4 Lu F, Jang K, Osica I, Hagiwara K, Yoshizawa M, Ishii M, Chino Y, Ohta K, Ludwichowska K, Kurzydłowski KJ, Ishihara S, Nakanishi T. Chem. Sci. 2018; 9: 6774
  • 5 Babu SS, Aimi J, Ozawa H, Shirahata N, Saeki A, Seki S, Ajayaghosh A, Möhwald H, Nakanishi T. Angew. Chem. 2012; 124: 3447
  • Angew. Chem. Int. Ed. 2012; 51: 3391
  • 6 Babu SS, Hollamby MJ, Aimi J, Ozawa H, Saeki A, Seki S, Kobayashi K, Hagiwara K, Yoshizawa M, Möhwald H, Nakanishi T. Nat. Commun. 2013; 4: 1969
  • 7 Zielinska A, Takai A, Sakurai H, Saeki A, Leonowicz M, Nakanishi T. Chem. Asian J. 2018; 13: 770
  • 8 Narayan B, Nagura K, Takaya T, Iwata K, Shinohara A, Shinmori H, Wang H, Li Q, Sun X, Li H, Ishihara S, Nakanishi T. Phys. Chem. Chem. Phys. 2018; 20: 2970
  • 9 Lu F, Takaya T, Iwata K, Kawamura I, Saeki A, Ishii M, Nagura K, Nakanishi T. Sci. Rep. 2017; 7: 3416
  • 10 Duan P, Yanai N, Kimizuka N. J. Am. Chem. Soc. 2013; 135: 19056
  • 11 Kushwaha K, Yu L, Stranius K, Singh SK, Hultmark S, Iqbal MN, Eriksson L, Johnston E, Erhart P, Müller C, Börjesson K. Adv. Sci. 2019; 6: 1801650
  • 12 Adachi N, Itagaki R, Sugeno M, Norioka T. Chem. Lett. 2014; 43: 1770
  • 13 Ishi-i T, Sakai M, Shinoda C. Tetrahedron 2013; 69: 9475
  • 14 Allain C, Piard J, Brosseau A, Han M, Paquier J, Marchandier T, Lequeux M, Boissière C, Audebert P. ACS Appl. Mater. Interfaces 2016; 8: 19843
  • 15 Machida T, Taniguchi R, Oura T, Sada K, Kokado K. Chem. Commun. 2017; 53: 2378
  • 16 Enozawa H, Ukai S, Ito H, Murata T, Morita Y. Org. Lett. 2019; 21: 2161
  • 17 Ogoshi T, Maruyama K, Sakatsume Y, Kakuta T, Yamagishi TA, Ichikawa T, Mizuno M. J. Am. Chem. Soc. 2019; 141: 785
  • 18 Giri N, Del Pópolo MG, Melaugh G, Greenaway RL, Rätzke K, Koschine T, Pison L, Gomes MF, Cooper AI, James SL. Nature 2015; 527: 216
  • 19 Rodrigues D, Sarmiento GP, Krimer NI, Mirenda M. ACS Appl. Electron. Mater. 2020; 2: 2662
  • 20 Isoda K, Ishiyama T, Mutoh Y, Matsukuma D. ACS Appl. Mater. Interfaces 2019; 11: 12053
  • 21 Walsh JC, Hogan DT, Williams KM, Brake SD, Venkataramana G, Misener TA, Wallace BJ, Johnson RP, Thompson DW, Zhao Y, Wagner BD, Bodwell GJ. ChemPlusChem 2019; 84: 754
  • 22 Norikane Y, Hirai Y, Yoshida M. Chem. Commun. 2011; 47: 1770
  • 23 Hendrickx E, Guenther BD, Zhang Y, Wang JF, Staub K, Zhang Q, Marder SR, Kippelen B, Peyghambarian N. Chem. Phys. 1999; 245: 407
  • 24 Joo J, Long S. Phys. Rev. B: Condens. Matter 1998; 57: 9567
  • 25 Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG. Phys. Rev. Lett. 1977; 39: 1098
  • 26 Rubinstein M, Colby RH. Polymer Physics. Oxford University Press; Oxford: 2003
  • 27 Savagatrup S, Zhao X, Chan E, Mei J, Lipomi DJ. Macromol. Rapid Commun. 2016; 37: 1623
  • 28 Oh JY, Rondeau-Gagné S, Chiu YC, Chortos A, Lissel F, Wang GN, Schroeder BC, Kurosawa T, Lopez J, Katsumata T, Xu J, Zhu C, Gu X, Bae WG, Kim Y, Jin L, Chung JW, Tok JB. H, Bao Z. Nature 2016; 539: 411
  • 29 Baek P, Mata JP, Sokolova A, Nelson A, Aydemir N, Shahlori R, McGillivray DJ, Barker D, Travas-Sejdic J. Soft Matter 2018; 14: 6875
  • 30 Baek P, Kerr-Phillips T, Damavandi M, Chaudhary OJ, Malmstrom J, Chan EW. C, Shaw P, Burn P, Barker D, Travas-Sejdic J. Eur. Polym. J. 2016; 84: 355
  • 31 Baek P, Aydemir N, An Y, Chan EW. C, Sokolova A, Nelson A, Mata JP, McGillivray D, Barker D, Travas-Sejdic J. Chem. Mater. 2017; 29: 8850
  • 32 Baek P, Voorhaar L, Barker D, Travas-Sejdic J. Acc. Chem. Res. 2018; 51: 1581
  • 33 Zokaei S, Kroon R, Gladisch J, Paulsen BD, Sohn W, Hofmann AI, Persson G, Stamm A, Syrén P, Olsson E, Rivnay J, Stavrinidou E, Lund A, Müller C. Adv. Sci. 2021; 8: 2002778
  • 34 Chiang YC, Kobayashi S, Isono T, Shih CC, Shingu T, Hung CC, Hsieh HC, Tung SH, Satoh T, Chen WC. Polym. Chem. 2019; 10: 5452
  • 35 Podzorov V. Nat. Mater. 2013; 12: 947
  • 36 Qian Z, Cao Z, Galuska L, Zhang S, Xu J, Gu X. Macromol. Chem. Phys. 2019; 220: 1900062
  • 37 Wang M, Baek P, Akbarinejad A, Barker D, Travas-Sejdic J. J. Mater. Chem. C 2019; 7: 5534
  • 38 Xie R, Lee Y, Aplan MP, Caggiano NJ, Müller C, Colby RH, Gomez ED. Macromolecules 2017; 50: 5146
  • 39 Edgeworth R, Dalton BJ, Parnell T. Eur. J. Phys. 1984; 5: 198
  • 40 Pankaj S, Beiner M. J. Phys. Chem. B 2010; 114: 15459
  • 41 Xie R, Weisen AR, Lee Y, Aplan MA, Fenton AM, Masucci AE, Kempe F, Sommer M, Pester CW, Colby RH, Gomez ED. Nat. Commun. 2020; 11: 893
  • 42 Yu L, Davidson E, Sharma A, Andersson MR, Segalman R, Müller C. Chem. Mater. 2017; 29: 5654
  • 43 Lu C, Lee WY, Gu X, Xu J, Chou HH, Yan H, Chiu YC, He M, Matthews JR, Niu W, Tok JB. H, Toney MF, Chen WC, Bao Z. Adv. Electron. Mater. 2017; 3: 1600311
  • 44 Zhang S, Ocheje MU, Huang L, Galuska L, Cao Z, Luo S, Cheng YH, Ehlenberg D, Goodman RB, Zhou D, Liu Y, Chiu YC, Azoulay JD, Rondeau-Gagné S, Gu X. Adv. Electron. Mater. 2019; 5: 1800899
  • 45 Zhang S, Ocheje MU, Luo S, Ehlenberg D, Appleby B, Weller D, Zhou D, Rondeau-Gagné S, Gu X. Macromol. Rapid Commun. 2018; 39: 1800092
  • 46 Li Y, Tatum WK, Onorato JW, Zhang Y, Luscombe CK. Macromolecules 2018; 51: 6352
  • 47 Sommerville PJ. W, Li Y, Dong BX, Zhang Y, Onorato JW, Tatum WK, Balzer AH, Stingelin N, Patel SN, Nealey PF, Luscombe CK. Macromolecules 2020; 53: 7511
  • 48 Jin YJ, Bae JE, Cho KS, Lee WE, Hwang DY, Kwak G. Adv. Funct. Mater. 2014; 24: 1928
  • 49 Jin YJ, Yoon JH, Sakaguchi T, Lee CL, Kwak G. Adv. Funct. Mater. 2016; 26: 4501
  • 50 Jin YJ, Kawamura Y, Teraguchi M, Aoki T, Kwak G. Polymer 2017; 123: 81
  • 51 Vandenbergh J, Van Severen I, Lutsen L, Adriaensens P, Bolink HJ, Cleij TJ, Vanderzande D. Polym. Chem. 2011; 2: 1279
  • 52 Jin Y, Kim JY, Song S, Xia Y, Kim J, Woo HY, Lee K, Suh H. Polymer 2008; 49: 467
  • 53 Zaquen N, Lutsen L, Vanderzande D, Junkers T. Polym. Chem. 2016; 7: 1355
  • 54 Zhao J, Bertho S, Vandenbergh J, Van Assche G, Manca J, Vanderzande D, Yin X, Shi J, Cleij T, Lutsen L, Van Mele B. Phys. Chem. Chem. Phys. 2011; 13: 12285
  • 55 Kim JY, Frisbie CD. J. Phys. Chem. C 2008; 112: 17726
  • 56 Seehafer K, Bender M, Schwaebel ST, Bunz UH. F. Macromolecules 2014; 47: 7014
  • 57 Ribierre JC, Zhao L, Inoue M, Schwartz PO, Kim JH, Yoshida K, Sandanayaka AS. D, Nakanotani H, Mager L, Méry S, Adachi C. Chem. Commun. 2016; 52: 3103
  • 58 Maya EM, Shirk JS, Snow AW, Roberts GL. Chem. Commun. 2001; 615
  • 59 Shinohara A, Pan C, Guo Z, Zhou L, Liu Z, Du L, Yan Z, Stadler FJ, Wang L, Nakanishi T. Angew. Chem. 2019; 131: 9682
  • Angew. Chem. Int. Ed. 2019; 58: 9581
  • 60 Hollamby MJ, Nakanishi T. J. Mater. Chem. C 2013; 1: 6178
  • 61 Papadopoulos P, Floudas G, Chi C, Wegner G. J. Chem. Phys. 2004; 120: 2368
  • 62 Winter HH. In Structure and Dynamics of Polymer and Colloidal Systems. Borsali R, Pecora R. Springer Netherlands; Dordrecht: 2002: 439
  • 63 Guo Z, Shinohara A, Pan C, Stadler FJ, Liu Z, Yan Z, Zhao J, Wang L, Nakanishi T. Mater. Horiz. 2020; 7: 1421
  • 64 Crenshaw BR, Weder C. Chem. Mater. 2003; 15: 4717
  • 65 Sagara Y, Karman M, Verde-Sesto E, Matsuo K, Kim Y, Tamaoki N, Weder C. J. Am. Chem. Soc. 2018; 140: 1584
  • 66 Willis-Fox N, Rognin E, Aljohani TA, Daly R. Chem 2018; 4: 2499
  • 67 Tanaka H. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1997; 56: 4451
  • 68 Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. Npj Comput. Mater. 2017; 3: 54
  • 69 Urzhumtsev YS. Polym. Mech. 1975; 11: 57
  • 70 Daniel WF. M, Burdyńska J, Vatankhah-Varnoosfaderani M, Matyjaszewski K, Paturej J, Rubinstein M, Dobrynin AV, Sheiko SS. Nat. Mater. 2016; 15: 183
  • 71 Leone AK, McNeil AJ. Acc. Chem. Res. 2016; 49: 2822
  • 72 Aplan MP, Gomez ED. Ind. Eng. Chem. Res. 2017; 56: 7888
  • 73 Verheyen L, Leysen P, Van Den Eede MP, Ceunen W, Hardeman T, Koeckelberghs G. Polymer 2017; 108: 521
  • 74 Yokozawa T, Ohta Y. Chem. Commun. 2013; 49: 8281
  • 75 Ono RJ, Kang S, Bielawski CW. Macromolecules 2012; 45: 2321
  • 76 Conticello VP, Gin DL, Grubbs RH. J. Am. Chem. Soc. 1992; 114: 9708
  • 77 Elacqua E, Gregor M. Angew. Chem. 2019; 131: 9627
  • Angew. Chem. Int. Ed. 2019; 58: 9527
  • 78 Shim C, Hirata S, Oshima J, Edura T, Hattori R, Adachi C. Appl. Phys. Lett. 2012; 101: 113302
  • 79 Kawamura M, Kuwae H, Kamibayashi T, Oshima J, Kasahara T, Shoji S, Mizuno J. Sci. Rep. 2020; 10: 14528